GEOMETRICAL ISOMERS OF RETINENE

Author:

Hubbard Ruth1,Gregerman Robert I.1,Wald George1

Affiliation:

1. From the Biological Laboratories, Harvard University, Cambridge

Abstract

Five crystalline retinenes have been isolated, which have every appearance of being cis-trans isomers of one another. They are all-trans retinene; three apparently mono-cis isomers: neoretinenes a and b and isoretinene a; and isoretinene b, an apparently di-cis isomer. The absorption spectra of these substances display the relations expected of cis-trans isomers. The main absorption band is displaced 5.5 to 7 mµ toward shorter wave lengths for each presumptive cis linkage. Some of the presumptive cis isomers also display a cis peak at 255 to 260 mµ. All five substances yield an identical blue product on mixing with antimony chloride. All of them are converted by light to what appears to be an identical mixture of stereoisomers. Heat isomerizes them very slowly; only neoretinene b exhibits large changes on heating at 70°C. for 3 hours. The various isomers have been extensively interconverted by gentle procedures, and all of them have been converted to all-trans retinene. The present theory of cis-trans isomerism in carotenoids predicts the existence of four stable isomers of retinene. Instead we seem to have five—specifically three mono-cis forms where two are expected. There is no doubt that all these substances are closely related isomers of one another. The only point in question is whether they differ in part by something other than cis-trans configuration. One possibility, as yet little supported by evidence, is that isomerization between ß- and α-ionone rings may be involved. If, however, as seems more likely, all these substances are geometrical isomers of one another, some modification is needed in the present theory of configurational relationships in this class of compounds.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3