THE PHOTOSYNTHETIC EFFICIENCY OF PHYCOCYANIN IN CHROOCOCCUS, AND THE PROBLEM OF CAROTENOID PARTICIPATION IN PHOTOSYNTHESIS

Author:

Emerson Robert1,Lewis Charlton M.1

Affiliation:

1. From the Carnegie Institution of Washington, Division of Plant Biology, Stanford University

Abstract

The absorption spectra of the principal pigment components extracted from Chroococcus cells have been measured, and their sum compared with the absorption of a suspension of living cells. The agreement was sufficiently close so that it was concluded the absorption spectra of the extracted and separated pigment components could be used to obtain estimates of the relative absorption of the various components in the living cells. The quantum yield of Chroococcus photosynthesis was measured at a succession of wave lengths throughout the visible spectrum, and the dependence of yield on wave length was compared with the proportions of light absorbed by the pigment components. This comparison showed beyond reasonable doubt that the light absorbed by phycocyanin is utilized in photosynthesis with an efficiency approximately equal to that of the light absorbed by chlorophyll. The light absorbed by the carotenoid pigments of Chroococcus seems for the most part to be unavailable for photosynthesis. The results leave open the possibility that light absorbed by the carotenoids is active in photosynthesis, but with an efficiency considerably lower than that of chlorophyll and phycocyanin. It is also possible that the light absorbed by one or a few of the several carotenoid components is utilized with a high efficiency, while the light absorbed by most of the components is lost for photosynthesis.

Publisher

Rockefeller University Press

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3