Modulation of K channels in dialyzed squid axons. ATP-mediated phosphorylation.

Author:

Perozo E1,Bezanilla F1,Dipolo R1

Affiliation:

1. Centro de Biofisica y Bioquimica, Instituto Venezolano de Investigaciones Cientificas, Caracas, Venezuela.

Abstract

In squid axons, internally applied ATP potentiates the magnitude of the potassium conductance and slows down its activation kinetics. This effect was characterized using internally dialyzed axons under voltage-clamp conditions. Both amplitude potentiation and kinetic slow-down effects are very selective towards ATP, other nucleotides like GTP and ITP are ineffective in millimolar concentrations. The current potentiation Km for ATP is near 10 microM with no further effects for concentrations greater than 100 microM. ATP effect is most likely produced via a phosphorylative reaction because Mg ion is an obligatory requirement and nonhydrolyzable ATP analogues are without effect. In the presence of ATP, the K current presents more delay, resembling a Cole-Moore effect due to local hyperpolarization of the channel. ATP effect induces a 10-20 mV shift in both activation and inactivation parameters towards more depolarized potentials. As a consequence of this shift, conductance-voltage curves with and without ATP cross at approximately -40 mV. This result is consistent with the hyperpolarization observed with ATP depletion, which is reversed by ATP addition. At potentials around the resting value, addition of ATP removes almost completely K current slow inactivation. It is suggested that a change in the amount of the slow inactivation is responsible for the differences in current amplitude with and without ATP, possibly as a consequence of the additional negative charge carried by the phosphate group. However, a modification of the local potential is not enough to explain completely the differences under the two conditions.

Publisher

Rockefeller University Press

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3