Structure–Function Relations of the First and Fourth Extracellular Linkers of the Type IIa Na+/Pi Cotransporter

Author:

Ehnes Colin1,Forster Ian C.1,Bacconi Andrea1,Kohler Katja1,Biber Jürg1,Murer Heini1

Affiliation:

1. Institute of Physiology, University of Zurich, CH-8057 Zurich, Switzerland

Abstract

Functionally important sites in the predicted first and fourth extracellular linkers of the type IIa Na+/Pi cotransporter (NaPi-IIa) were identified by cysteine scanning mutagenesis (Ehnes et al., 2004). Cysteine substitution or modification with impermeant and permeant methanethiosulfonate (MTS) reagents at certain sites resulted in changes to the steady-state voltage dependency of the cotransport mode (1 mM Pi, 100 mM Na+ at pH 7.4) of the mutants. At Gly-134 (ECL-1) and Met-533 (ECL-4), complementary behavior of the voltage dependency was documented with respect to the effect of cys-substitution and modification. G134C had a weak voltage dependency that became even stronger than that of the wild type (WT) after MTS incubation. M533C showed a WT-like voltage dependency that became markedly weaker after MTS incubation. To elucidate the underlying mechanism, the steady-state and presteady-state kinetics of these mutants were studied in detail. The apparent affinity constants for Pi and Na+ did not show large changes after MTS exposure. However, the dependency on external protons was changed in a complementary manner for each mutant. This suggested that cys substitution at Gly-134 or modification of Cys-533 had induced similar conformational changes to alter the proton modulation of transport kinetics. The changes in steady-state voltage dependency correlated with changes in the kinetics of presteady-state charge movements determined in the absence of Pi, which suggested that voltage-dependent transitions in the transport cycle were altered. The steady-state and presteady-state behavior was simulated using an eight-state kinetic model in which the transition rate constants of the empty carrier and translocation of the fully loaded carrier were found to be critical determinants of the transport kinetics. The simulations predict that cys substitution at Gly-134 or cys modification of Cys-533 alters the preferred orientation of the empty carrier from an inward to outward-facing conformation for hyperpolarizing voltages.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3