Microspectrophotometry of rhodopsin and metarhodopsin in the moth Galleria.

Author:

Goldman L J,Barnes S N,Goldsmith T H

Abstract

Fresh, frozen sections of the photoreceptor layer of the compound eye of the moth Galleria have been examined by microspectrophotometry, using 4 times 8 mum measuring beams that sampled from approximately two to four rhabdoms. The principal visual pigment absorbs maximally at 510 nm (P510), and on irradiation is converted to a thermally stable, pH-insensitive metarhodopsin with lambda max at 484 nm (M484) and a 43% increase in molar extinction coefficient. Subsequently, short wavelength irradiation of the metarhodopsin photoregenerates some P510, but the absence of an isosbestic point the cycle of spectral changes is consistent with the presence of smaller amounts of violet-or ultraviolet-sensitive visual pigment(s) that also are converted to a blue-absorbing metarhodopsin. Difference spectra for both P510 and M484 were measured, using hydroxylamine. The 484-nm metarhodopsin is reversibly converted to a form with lambda max at 363 nm by high concentrations of glycerol. Dark regeneration of rhodopsin in vivo after several minutes exposure of thoroughly dark-adapted animals to full sunlight requires several days.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3