ATP Dependence of the ICl, swell Channel Varies with Rate of Cell Swelling

Author:

Bond Tamara11,Basavappa Srisaila11,Christensen Michael11,Strange Kevin11

Affiliation:

1. From the Department of Anesthesiology and Department of Pharmacology, Anesthesiology Research Division, Vanderbilt University Medical Center, Nashville, Tennessee 37232

Abstract

Swelling-induced activation of the outwardly rectifying anion current, ICl, swell, is modulated by intracellular ATP. The mechanisms by which ATP controls channel activation, however, are unknown. Whole cell patch clamp was employed to begin addressing this issue. Endogenous ATP production was inhibited by dialyzing N1E115 neuroblastoma cells for 4–5 min with solutions containing (μM): 40 oligomycin, 5 iodoacetate, and 20 rotenone. The effect of ATP on current activation was observed in the absence of intracellular Mg2+, in cells exposed to extracellular metabolic inhibitors for 25–35 min followed by intracellular dialysis with oligomycin, iodoacetate, and rotenone, after substitution of ATP with the nonhydrolyzable analogue AMP-PNP, and in the presence of AMP-PNP and alkaline phosphatase to dephosphorylate intracellular proteins. These results demonstrate that the ATP dependence of the channel requires ATP binding rather than hydrolysis and/or phosphorylation reactions. When cells were swollen at 15–55%/min in the absence of intracellular ATP, current activation was slow (0.3–0.8 pA/pF per min). ATP concentration increased the rate of current activation up to maximal values of 4–6 pA/pF per min, but had no effect on the sensitivity of the channel to cell swelling. Rate of current activation was a saturable, hyperbolic function of ATP concentration. The EC50 for ATP varied inversely with the rate of cell swelling. Activation of current was rapid (4–6 pA/pF per min) in the absence of ATP when cells were swollen at rates ≥65%/min. Intracellular ATP concentration had no effect on current activation induced by high rates of swelling. Current activation was transient when endogenous ATP was dialyzed out of the cytoplasm of cells swollen at 15%/min. Rundown of the current was reversed by increasing the rate of swelling to 65%/min. These results indicate that the channel and/or associated regulatory proteins are capable of sensing the rate of cell volume increase. We suggest that channel activation occurs via ATP-dependent and -independent mechanisms. Increasing the rate of cell swelling appears to increase the proportion of channels activating via the ATP-independent pathway. These findings have important physiological implications for understanding ICl, swell regulation, the mechanisms by which cells sense volume changes, and volume homeostasis under conditions where cell metabolism is compromised.

Publisher

Rockefeller University Press

Subject

Physiology

Reference33 articles.

1. Single-channel properties of swelling-activated anion conductance in rat inner medullary collecting duct cells;Boese;Am J Physiol,1996

2. The ABCs of ATP-sensitive potassium channels: more pieces of the puzzle;Bryan;Curr Opin Cell Biol,1997

3. Intracellular ionic strength regulates the volume sensitivity of a swelling-activated anion channel;Cannon;Am J Physiol,1998

4. Swelling- and cAMP-activated Cl−currents in isolated rat carotid body type I cells;Carpenter;J Physiol (Lond),1997

5. Cellular control lies in the balance of forces;Chicurel;Curr Opin Cell Biol,1998

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3