Functional Effects of Central Core Disease Mutations in the Cytoplasmic Region of the Skeletal Muscle Ryanodine Receptor

Author:

Avila Guillermo1,Dirksen Robert T.1

Affiliation:

1. Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642

Abstract

Central core disease (CCD) is a human myopathy that involves a dysregulation in muscle Ca2+ homeostasis caused by mutations in the gene encoding the skeletal muscle ryanodine receptor (RyR1), the protein that comprises the calcium release channel of the SR. Although genetic studies have clearly demonstrated linkage between mutations in RyR1 and CCD, the impact of these mutations on release channel function and excitation-contraction coupling in skeletal muscle is unknown. Toward this goal, we have engineered the different CCD mutations found in the NH2-terminal region of RyR1 into a rabbit RyR1 cDNA (R164C, I404M, Y523S, R2163H, and R2435H) and characterized the functional effects of these mutations after expression in myotubes derived from RyR1-knockout (dyspedic) mice. Resting Ca2+ levels were elevated in dyspedic myotubes expressing four of these mutants (Y523S > R2163H > R2435H R164C > I404M RyR1). A similar rank order was also found for the degree of SR Ca2+ depletion assessed using maximal concentrations of caffeine (10 mM) or cyclopiazonic acid (CPA, 30 μM). Although all of the CCD mutants fully restored L-current density, voltage-gated SR Ca2+ release was smaller and activated at more negative potentials for myotubes expressing the NH2-terminal CCD mutations. The shift in the voltage dependence of SR Ca2+ release correlated strongly with changes in resting Ca2+, SR Ca2+ store depletion, and peak voltage–gated release, indicating that increased release channel activity at negative membrane potentials promotes SR Ca2+ leak. Coexpression of wild-type and Y523S RyR1 proteins in dyspedic myotubes resulted in release channels that exhibited an intermediate degree of SR Ca2+ leak. These results demonstrate that the NH2-terminal CCD mutants enhance release channel sensitivity to activation by voltage in a manner that leads to increased SR Ca2+ leak, store depletion, and a reduction in voltage-gated Ca2+ release. Two fundamentally distinct cellular mechanisms (leaky channels and EC uncoupling) are proposed to explain how altered release channel function caused by different mutations in RyR1 could result in muscle weakness in CCD.

Publisher

Rockefeller University Press

Subject

Physiology

Reference42 articles.

1. Functional impact of the ryanodine receptor on the skeletal muscle L-type Ca2+ channel;Avila;J. Gen. Physiol.,2000

2. Excitation-contraction uncoupling by a human central core disease mutation in the ryanodine receptor;Avila;Proc. Natl. Acad. Sci. USA.,2001

3. Ca2+ release through ryanodine receptors regulates skeletal muscle L-type Ca2+ channel expression;Avila;J. Biol. Chem.,2001

4. Luminal loop of the ryanodine receptora pore-forming segment?;Balshaw;Proc. Natl. Acad. Sci. USA.,1999

5. Mutation screening of the RYR1 gene and identification of two novel mutations in Italian malignant hyperthermia families;Barone;J. Med. Genet.,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3