Multiple Modes of Calcium-Induced Calcium Release in Sympathetic Neurons I

Author:

Albrecht Meredith A.1,Colegrove Stephen L.1,Hongpaisan Jarin2,Pivovarova Natalia B.2,Andrews S. Brian2,Friel David D.1

Affiliation:

1. Department of Neuroscience, Case Western Reserve University, Cleveland, OH 44106

2. Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892

Abstract

Many cells express ryanodine receptors (RyRs) whose activation is thought to amplify depolarization-evoked elevations in cytoplasmic Ca2+ concentration ([Ca2+]i) through a process of Ca2+-induced Ca2+ release (CICR). In neurons, it is usually assumed that CICR triggers net Ca2+ release from an ER Ca2+ store. However, since net ER Ca2+ transport depends on the relative rates of Ca2+ uptake and release via distinct pathways, weak activation of a CICR pathway during periods of ER Ca accumulation would have a totally different effect: attenuation of Ca2+ accumulation. Stronger CICR activation at higher [Ca2+]i could further attenuate Ca2+ accumulation or trigger net Ca2+ release, depending on the quantitative properties of the underlying Ca2+ transporters. This and the companion study (Hongpaisan, J., N.B. Pivovarova, S.L. Colgrove, R.D. Leapman, and D.D. Friel, and S.B. Andrews. 2001. J. Gen. Physiol. 118:101–112) investigate which of these CICR “modes” operate during depolarization-induced Ca2+ entry in sympathetic neurons. The present study focuses on small [Ca2+]i elevations (less than ∼350 nM) evoked by weak depolarization. The following two approaches were used: (1) Ca2+ fluxes were estimated from simultaneous measurements of [Ca2+]i and ICa in fura-2–loaded cells (perforated patch conditions), and (2) total ER Ca concentrations ([Ca]ER) were measured using X-ray microanalysis. Flux analysis revealed triggered net Ca2+ release during depolarization in the presence but not the absence of caffeine, and [Ca2+]i responses were accelerated by SERCA inhibitors, implicating ER Ca2+ accumulation, which was confirmed by direct [Ca]ER measurements. Ryanodine abolished caffeine-induced CICR and enhanced depolarization-induced ER Ca2+ accumulation, indicating that activation of the CICR pathway normally attenuates ER Ca2+ accumulation, which is a novel mechanism for accelerating evoked [Ca2+]i responses. Theory shows how such a low gain mode of CICR can operate during weak stimulation and switch to net Ca2+ release at high [Ca2+]i, a transition demonstrated in the companion study. These results emphasize the importance of the relative rates of Ca2+ uptake and release in defining ER contributions to depolarization-induced Ca2+ signals.

Publisher

Rockefeller University Press

Subject

Physiology

Reference52 articles.

1. Ryanodine-induced enhancement of Ca2+ sequestration by intracellular stores in sympathetic neurons;Albrecht;Biophys. J.,1997

2. Ca2+-induced Ca2+ release in chromaffin cells seen from inside the ER with targeted aequorin;Alonso;J. Cell Biol.,1999

3. Mitochondrial oversight of cellular Ca2+ signaling;Babcock;Curr. Opin. Neurobiol.,1998

4. Neuronal calcium signaling;Berridge;Neuron.,1998

5. Ryanodine Receptors and intracellular calcium signaling;Berridge,1995

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3