Affiliation:
1. Department of Physiology, University of Bern, 3012 Bern, Switzerland
Abstract
In cardiac muscle, Ca2+-induced Ca2+ release (CICR) from the sarcoplasmic reticulum (SR) defines the amplitude and time course of the Ca2+ transient. The global elevation of the intracellular Ca2+ concentration arises from the spatial and temporal summation of elementary Ca2+ release events, Ca2+ sparks. Ca2+ sparks represent the concerted opening of a group of ryanodine receptors (RYRs), which are under the control of several modulatory proteins and diffusible cytoplasmic factors (e.g., Ca2+, Mg2+, and ATP). Here, we examined by which mechanism the free intracellular Mg2+ ([Mg2+]free) affects various Ca2+ spark parameters in permeabilized mouse ventricular myocytes, such as spark frequency, duration, rise time, and full width, at half magnitude and half maximal duration. Varying the levels of free ATP and Mg2+ in specifically designed solutions allowed us to separate the inhibition of RYRs by Mg2+ from the possible activation by ATP and Mg2+-ATP via the adenine binding site of the channel. Changes in [Mg2+]free generally led to biphasic alterations of the Ca2+ spark frequency. For example, lowering [Mg2+]free resulted in an abrupt increase of spark frequency, which slowly recovered toward the initial level, presumably as a result of SR Ca2+ depletion. Fitting the Ca2+ spark inhibition by [Mg2+]free with a Hill equation revealed a Ki of 0.1 mM. In conclusion, our results support the notion that local Ca2+ release and Ca2+ sparks are modulated by Mg2+ in the intracellular environment. This seems to occur predominantly by hindering Ca2+-dependent activation of the RYRs through competitive Mg2+ occupancy of the high-affinity activation site of the channels. These findings help to characterize CICR in cardiac muscle under normal and pathological conditions, where the levels of Mg2+ and ATP can change.
Publisher
Rockefeller University Press
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献