Calcium Current Activated by Depletion of Calcium Stores in Xenopus Oocytes

Author:

Yao Yong1,Tsien Roger Y.11

Affiliation:

1. From the Department of Pharmacology and Howard Hughes Medical Institute, University of California, San Diego, La Jolla, California 92093-0647

Abstract

Ca2+ currents activated by depletion of Ca2+ stores in Xenopus oocytes were studied with a two-electrode voltage clamp. Buffering of cytosolic Ca2+ with EGTA and MeBAPTA abolished ICl(Ca) and unmasked a current in oocytes that was activated by InsP3 or ionomycin in minutes and by thapsigargin or the chelators themselves over hours. At −60 mV in 10 mM extracellular CaCl2, the current was typically around −90 or −160 nA in oocytes loaded with EGTA or MeBAPTA, respectively. This current was judged to be a Ca2+-selective current for the following reasons: (a) it was inwardly rectifying and reversed at membrane potentials usually more positive than +40 mV; (b) it was dependent on extracellular [CaCl2] with Km = 11.5 mM; (c) it was highly selective for Ca2+ against monovalent cations Na+ and K+, because replacing Na+ and K+ by N-methyl-d-glucammonium did not reduce the amplitude or voltage dependence of the current significantly; and (d) Ca2+, Sr2+, and Ba2+ currents had similar instantaneous conductances, but Sr2+ and Ba2+ currents appeared to inactivate more strongly than Ca2+. This Ca2+ current was blocked by metal ions with the following potency sequence: Mg2+ << Ni2+ ≈ Co2+ ≈ Mn2+ < Cd2+ << Zn2+ << La3+. It was also inhibited by niflumic acid, which is commonly used to block ICl(Ca). PMA partially inhibited the Ca2+ current, and this effect was mostly abolished by calphostin C, indicating that the Ca2+ current is sensitive to protein kinase C. These results are the first detailed electrophysiological characterization of depletion-activated Ca2+ current in nondialyzed cells. Because exogenous molecules and channels are easy to introduce into oocytes and the distortions in measuring ICl(Ca) can now be bypassed, oocytes are now a superior system in which to analyze the activation mechanisms of capacitative Ca2+ influx.

Publisher

Rockefeller University Press

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3