Neuroprotective and long term potentiation improving effects of vitamin E in juvenile hypothyroid rats

Author:

Baghcheghi Yousef1,Mansouri Somaieh2,Beheshti Farimah34,Shafei Mohammad Naser4,Salmani Hossien1,Reisi Parham5,Anaeigoudari Akbar6,Bideskan Alireza Ebrahimzadeh7,Hosseini Mahmoud8

Affiliation:

1. Student Research Committee, Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

2. Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

3. Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran

4. Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

5. Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran

6. Department of Physiology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran

7. Microanatomy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

8. Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

Abstract

Abstract. Protective effects of vitamin E (Vit E) on long term potentiation (LTP) impairment, neuronal apoptosis and increase of nitric oxide (NO) metabolites in the hippocampus of juvenile rats were examined. The rats were grouped (n=13) as: (1) control; (2) hypothyroid (Hypo) and (3) Hypo-Vit E. Propylthiouracil (PTU) was given in drinking water (0.05%) during 6 weeks. Vit E (20 mg/ kg) was daily injected (IP). To evaluate synaptic plasticity, LTP from the CA1 area of the hippocampus followed by high frequency stimulation to the ipsilateral Schafer collateral pathway was carried out. The cortical and hippocampal tissues were then removed to measure NO metabolites. The brains of 5 animals in each group were removed for apoptosis study. The hypothyroidism status decreased the slope, 10–90% slope and amplitude of field excitatory post synaptic potential (fEPSP) compared to the control group (P<0.01–P<0.001). Injection of Vit E increased the slope, 10–90% slope and amplitude of the fEPSP in the Hypo-Vit E group in comparison to the Hypo group (P<0.05–P<0.01). TUNEL positive neurons and NO metabolites were higher in the hippocampus of the Hypo rats, as compared to those in the hippocampus of the control ones (P<0.001). Treatment of the Hypo rats by Vit E decreased apoptotic neurons (P<0.01–P<0.001) and NO metabolites (P<0.001) in the hippocampus compared to the Hypo rats. The results of the present study showed that Vit E prevented the LTP impairment and neuronal apoptosis in the hippocampus of juvenile hypothyroid rats.

Publisher

Hogrefe Publishing Group

Subject

Nutrition and Dietetics,General Medicine,Endocrinology, Diabetes and Metabolism,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3