Improvement of SERS signal measured by portable Raman instrument using random sampling technique

Author:

Van Tien NguyenORCID,Trong Nghia Nguyen,Thi Ha Lien Nghiem,Duong VuORCID,Quang Hoa Do,Chi Dung Duong,Nguyen Nhue Phan,Minh Hue NguyenORCID

Abstract

In recent years, portable Raman spectrometers and commercialized surface-enhanced Raman scattering (SERS) substrates have become increasingly popular. They have turned out to be great tools for both substance detection, identification, and analysis on-site. This work addresses the technique to collect proper Raman spectra using SERS substrates and portable Raman spectrometers. We propose a random sampling technique that gives representative and high-quality spectra with high intensity and good resolution. This technique was tested on a home-built portable Raman spectrometer and SERS substrates based on metal film over nano-sphere (MFON) structure. Experimental results showed that peaks of Raman spectrum collected using random sampling technique are significantly narrower than those of spectra measured in conventional one and prevent samples and SERS substrates from photoinduced degradation. Potentially, this method can promote quantitative SERS and chemical trace analysis using portable Raman spectrometers.

Publisher

Publishing House for Science and Technology, Vietnam Academy of Science and Technology (Publications)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3