Impact of different ENSO positions and Indian Ocean Dipole events on Indonesian rainfall

Author:

Zaini Ahmad Zul Amal,Vonnisa Mutya,Marzuki Marzuki

Abstract

The El Niño Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) are widely recognized as the leading modes of climate variability in the tropics. This paper investigates the impact of different ENSO positions and IOD events on Indonesian rainfall during the period 1950–2021. The ENSO position is determined by the largest value of four Niño indices: Niño 1+2, Niño 3, Niño 3.4, and Niño 4. These ENSO positions are hereafter referred to as  El-Niño/La-Niña 1+2, El-Niño/La-Niña 3, El-Niño/La-Niña 3.4, and El-Niño/La-Niña 4, respectively. The Dipole Mode Index (DMI) was used to observe IOD events. Different ENSO positions and IOD events result in different responses to Indonesian rainfall, obtained from the European Center for Medium-Range Weather Forecasts (ECMWF) ERA-5 data. The most significant decrease in rainfall occurs during the June-to-Septempber (JJAS) season of El-Niño 3. Conversely, during El-Niño 3.4, rainfall increases in the Sumatra and part of Kalimantan regions. The most significant increase in rainfall occurs during La-Niña 3.4, followed by La-Niña 4, La-Niña 3, and La-Niña 1+2. During a positive IOD phase, the southern part of western Indonesia experiences a decrease in precipitation of more than 30%. A more significant decrease in rainfall (>40%) occurs when a positive IOD co-occurs with El-Niño. During a negative IOD phase, Indonesia's rainfall patterns become more spatially variable. An increase in rainfall is more pronounced when a negative IOD co-occurs with La-Niña. The difference in Indonesian rainfall during different ENSO positions and IOD phases is related to differences in atmosphere-ocean interaction during each condition.

Publisher

Publishing House for Science and Technology, Vietnam Academy of Science and Technology (Publications)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3