Affiliation:
1. 1Fachbereich Chemie, Philipps-Universität, Hans-Meerwein-Strasse, D-35032 Marburg, Germany
Abstract
Solutions of the zwitterionic betaine dye 2,6-diphenyl-4-(2,4,6-triphenylpyridinium-1-yl)phenolate (hereinafter called standard betaine dye) and its derivatives are solvatochromic, thermochromic, piezochromic, and halochromic. That is, the position of its longest-wavelength intramolecular charge-transfer (CT) absorption band depends on solvent polarity, solution temperature, external pressure, and the type and concentration of salts (ionophores) added to the betaine dye solution. The outstanding large negative solvatochromism of this standard betaine dye has been used to establish UV/vis spectroscopically a comprehensive set of empirical parameters of solvent polarity, called ET(30) resp. ETN values, now known for many molecular and ionic solvents as well as for a great variety of solvent mixtures. This report describes relevant physicochemical properties of this standard betaine dye as well as the definition and some more recent practical applications of these solvent polarity parameters, derived from the standard betaine dye and its derivatives. In particular, the perichromism of the standard betaine dye can be used to study the polarity of microheterogeneous solutions (e.g., micelles and other organized media), surfaces (e.g., silica, alumina, cellulose), glasses (e.g., sol-gel systems), and solids (e.g., polymers), and for the construction of chemical sensors. As extension to solvatochromism, the more general term perichromism describes UV/vis band shifts of chromophore-containing solutes which are caused not only by changes in the surrounding solvent sphere, but also by their embedding in other surroundings such as micelles, vesicles, glasses, polymers, solids, interfaces, and surfaces. Some representative examples for such extended applications of the perichromic standard betaine dye are given.
Subject
General Chemical Engineering,General Chemistry
Cited by
152 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献