Resistance to localized corrosion of pure Ni, micro- and nano-SiC composite electrodeposits

Author:

Lekka Maria1,Lanzutti Alex1,Zanella Caterina2,Zendron Gabriel2,Fedrizzi Lorenzo1,Bonora Pier Luigi2

Affiliation:

1. 1Department of Chemical Science and Technologies, University of Udine, Via del Cotonificio 108, 33100, Udine, Italy

2. 2Department of Materials Engineering, Laboratory of Industrial Corrosion Control, University of Trento, Via Mesiano 77, 38050, Trento, Italy

Abstract

The aim of this work was the production and characterization of composite Ni matrix electrodeposits. Pure Ni, micro- and nano-SiC Ni matrix composite deposits have been produced from a Watts’s-type electroplating bath under both direct (DC) and pulse current (PC) conditions. The obtained deposits have been characterized regarding their microstructure by scanning electron microscopy (SEM) observations on both top surface and cross-section and their SiC content by energy-dispersive X-ray spectrometry (EDXS) and glow discharge optical emission spectrometry (GDOES) analyses. The resistance to localized corrosion has been evaluated by exposing the samples in a salt spray cabinet and performing visual observation as well as electrochemical impedance spectroscopy (EIS) measurements every five days. Both the use of PC and the codeposition of the nanoparticles lead to a grain refinement of the Ni matrix. The use of the PC did not influence in a significant way the resistance of the pure Ni deposits to the localized corrosion. The incorporation of micro-SiC led to a decrease of the corrosion resistance for the deposits produced under DC, while the microcomposites produced under PC presented a corrosion resistance comparable to the pure Ni deposits. The nanocomposites presented the highest corrosion resistance due to the more compact and fine-grained microstructure. EIS revealed the presence of a localized corrosion attack earlier than the visual observation, giving useful information about the failure mechanism.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

Reference15 articles.

1. apsusc;Hu;Appl Surf Sci,2004

2. surfcoat;Aslanyan;Surf Coat Technol,2004

3. matchemphys;Mater Chem Phys,2004

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3