Preparation of low-molecular-weight chitosan derivative zinc complexes and their effect on the growth of liver cancer cells in vitro

Author:

Wang Rong-Min1,He Nai-Pu1,Song Peng-Fei1,He Yu-Feng1,Ding Lan2,Lei Ziqiang1

Affiliation:

1. 1Key Laboratory of Polymer Materials of Gansu Province, Institute of Polymer, Lanzhou 730070, China

2. 2Department of Biology, Northwest Normal University, Lanzhou 730070, China

Abstract

Low-molecular-weight (LMW) chitosan salicylaldehyde Schiff-base and its zinc(II) complexes were synthesized and characterized by Fourier transform-infrared (FT-IR) spectra, transmission electron microscopy (TEM), dynamic light scattering (DLS), gel permeation chromatography-multiangle laser light scattering (GPC-MALLS), and elemental analysis. The results of electrophoretic analysis suggest that the Zn complexes bound to DNA by means of electrostatic interactions and intercalation. The effect of the Zn complexes on the growth of SMMC-7721 liver cancer cells was investigated by sulforhodamine B assay in vitro. The results reveal that the growth of liver cancer cells was inhibited by LMW-chitosan and their Zn complexes. The inhibition rate of the Zn complexes was higher than that of LMW-chitosan ligand. The LMW-chitosan Schiff-base Zn complex exhibited higher anticancer activity than the LMW-chitosan Zn complex. Combining LMW-chitosan with Schiff-base and Zn improved its anticancer activity, which we ascribe to the synergistic effect between the chitosan matrix and the planar construction of the Zn complexes.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

Reference46 articles.

1. mpmed de;Arkenau;Medicine,2007

2. cr;Steinborn;Chem Rev,2000

3. bc;Routier;Bioconjugate Chem,1997

4. pac Pure;Hannon;Appl Chem,1351

5. ejca;Mayer;Eur J Cancer,2008

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3