Affiliation:
1. 1Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA
Abstract
With standard differential scanning calorimetry (DSC), it is possible to derive calorimetric data for equilibrium or metastable samples. The introduction of temperature-modulated DSC (TMDSC) permits in its quasi-isothermal (non-scanning) mode (TMDC), long-time apparent heat capacity measurements of high precision (±1 %). For flexible molecules, heat capacity measurements from the various calorimetric methods could be combined in the ATHAS Data Bank, which now contains experimental data for over 200 materials. These data were linked to the vibrational and large-amplitude motion of the constituent atoms and molecules, to provide a base for the judgement of the thermal analyses, extending outside the range of equilibrium or metastability with an error of only 2-5 %. The TMDC together with DSC is now able to quantitatively assess the reversibility of thermal processes. A sufficient number of systems have been analyzed in this fashion to develop better understanding of macro-, micro-, and nanophases of flexible macromolecules. The new concepts discussed are: (1) multiple glass transitions due to possible rigid-amorphous fractions (RAFs) and glass transitions within crystals, both observed in semicrystalline macromolecules, and (2) locally reversibly melting on the surface of chain-folded crystals. The locally reversible melting decreases with crystal perfection and also disappears when the chains become rigid.
Subject
General Chemical Engineering,General Chemistry
Reference75 articles.
1. Differential scanning calorimetry of flexible linear in in No pp Chemical;Wunderlich;macromolecules Polymer Characterization Advances Chemistry Series American Society,1983
2. Infrared Spectra of New York;Herzberg;Molecules,1945
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献