Quasi-isothermal temperature-modulated differential scanning calorimetry (TMDSC) for the separation of reversible and irreversible thermodynamic changes in glass transition and melting ranges of flexible macromolecules

Author:

Wunderlich Bernhard1

Affiliation:

1. 1Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA

Abstract

With standard differential scanning calorimetry (DSC), it is possible to derive calorimetric data for equilibrium or metastable samples. The introduction of temperature-modulated DSC (TMDSC) permits in its quasi-isothermal (non-scanning) mode (TMDC), long-time apparent heat capacity measurements of high precision (±1 %). For flexible molecules, heat capacity measurements from the various calorimetric methods could be combined in the ATHAS Data Bank, which now contains experimental data for over 200 materials. These data were linked to the vibrational and large-amplitude motion of the constituent atoms and molecules, to provide a base for the judgement of the thermal analyses, extending outside the range of equilibrium or metastability with an error of only 2-5 %. The TMDC together with DSC is now able to quantitatively assess the reversibility of thermal processes. A sufficient number of systems have been analyzed in this fashion to develop better understanding of macro-, micro-, and nanophases of flexible macromolecules. The new concepts discussed are: (1) multiple glass transitions due to possible rigid-amorphous fractions (RAFs) and glass transitions within crystals, both observed in semicrystalline macromolecules, and (2) locally reversibly melting on the surface of chain-folded crystals. The locally reversible melting decreases with crystal perfection and also disappears when the chains become rigid.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

Reference75 articles.

1. Differential scanning calorimetry of flexible linear in in No pp Chemical;Wunderlich;macromolecules Polymer Characterization Advances Chemistry Series American Society,1983

2. Infrared Spectra of New York;Herzberg;Molecules,1945

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Vibrational heat capacity of collagen and collagen–water;Journal of Thermal Analysis and Calorimetry;2019-08-28

2. A recyclable epoxy for composite wind turbine blades;Advanced Manufacturing: Polymer & Composites Science;2019-07-03

3. Controlling Crystal Microstructure To Minimize Loss in Polymer Dielectrics;Macromolecules;2017-10-06

4. Halogen and Hydrogen Bonding in Povidone-Iodine and Related Co-Phases;Crystal Growth & Design;2017-09-25

5. Modulated Temperature Differential Scanning Calorimetry;Principles of Thermal Analysis and Calorimetry;2016-02-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3