Beta-carotene and lung cancer

Author:

Russell Robert M.1

Affiliation:

1. 1Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington Street, Boston, MA 02111, USA

Abstract

Does beta-carotene increase, rather than decrease, human lung cancer rates? A large body of observational epidemiologic study has demonstrated that individuals who eat more fruits and vegetables rich in carotenoids and/or who have higher levels of serum beta-carotene have a lower risk of cancer, particularly lung cancer. This inverse relationship has been particularly strong in lung cancer patients with a history of heavy smoking. However, there is contradictory evidence from recent human intervention studies using beta-carotene supplements (20­30 mg per day). An increase in risk of lung cancer among smokers who took beta-carotene supplements was reported in the Alpha Tocopherol, Beta-carotene Cancer Prevention (ATBC) Trial and among smokers and asbestos-exposed workers in the Beta-Carotene and Retinol Efficiency Trial (CARET), but not among male physicians in the United States in the Physicians Health Study (only 11 % of whom were current smokers). Whether there is a true hazard associated with beta-carotene has been evaluated in control studies using the ferret. This animal mimics the human tissue metabolism of beta-carotene, and has been used for studies of tobacco smoking and inhalation toxicology. In the first study, ferrets were given a high-dose beta-carotene supplement equivalent to 30 mg per day in humans, and exposed cigarette smoke or both for six months. A strong proliferative response in lung tissue and squamous metaplasia were observed in all beta-carotene-supplemented animals, and this response was enhanced by exposure to tobacco smoke. When compared to the control group, beta-carotene-supplemented animals (with or without smoke exposure) had statistically significantly lower concentrations of retinoic acid in lung tissue, and they exhibited reductions in RAR-beta gene expression (a tumor suppressor gene). Further, ferrets given a high-dose beta-carotene supplement and exposed to tobacco smoke had fourfold elevated expressions of c-jun and c-fos genes. In a second study, ferrets were given either physiological- or pharmacologic-dose beta-carotene supplementations, which were equivalent to 6 mg vs. 30 mg per day in humans, respectively. The animals were exposed to cigarette smoke for six months. The retinoic acid concentration and RAR beta-gene expression were reduced in the lung tissues, whereas the expression of AP1, cyclin D1, and proliferative cell nuclear antigen were greater in the high-dose, beta-carotene-supplemented animals with or without smoke, as well as the smoke-exposed, low-dose, beta-carotene-supplemented animalsbut not in the low-dose, beta-carotene-supplemented animals alone, as compared with the control group. Squamous metaplasia was only observed in the lung tissues of high-dose, beta-carotene exposed groups with or without smoke (but not the low-dose beta-carotene plus smoke group, the low-dose beta-carotene-supplemented group, or the control group). These data show that in contrast with the pharmacologic dose of beta-carotene, a physiologic dose of beta-carotene in smoke-exposed ferrets has no detrimental effectand, in fact, may afford weak protection against lung damage induced by cigarette smoke. Further studies from our laboratory have revealed an instability of the beta-carotene molecule in the lungs of cigarette smoke-exposed ferrets. Oxidized beta-carotene metabolites may play a role in lung carcinogenesis: by inducing carcinogen-bioactivating enzymes, facilitating the binding of metabolites of benz[a]pyrene to DNA, enhancing retinoic acid metabolism by P450 enzyme induction with subsequent down-regulation of RAR-beta, and acting as pro-oxidants, causing damage to DNA. Ferret studies under highly controlled experimental conditions using high- and low-dose beta-carotene in the presence of alpha tocopherol and ascorbic acid (thereby stabilizing the beta-carotene molecule) showed protective effects against smoke-induced lung squamous metaplasia in ferrets.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pigmented Cereals as a Source of Carotenoids;Pigmented Cereals and Millets;2023-02-17

2. Effects of Drying Conditions on the Content of Biologically Active Compounds in Winter Camelina Sativa Seeds;European Journal of Lipid Science and Technology;2022-09-14

3. ​Laurocerasus officinalis Roem: Biochemical Parameters and Antioxidant Components in Diabetic Rat Model;Indian Journal of Animal Research;2022-03-12

4. Biotechnological exploitation of cyanobacterial photoprotective metabolites;Vegetos;2022-02-16

5. Nutraceutical and Functional Foods in Cancer Management and Therapy;Research Anthology on Recent Advancements in Ethnopharmacology and Nutraceuticals;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3