Style Transfer Generator for Dataset Testing Classification

Author:

Wedha Bayu Yasa,Karjadi Daniel Avian,Wedha Alessandro Enriqco Putra Bayu,Santoso Handri

Abstract

The development of the Generative Adversarial Network is currently very fast. First introduced by Ian Goodfellow in 2014, its development has accelerated since 2018. Currently, the need for datasets is sometimes still lacking, while public datasets are sometimes still lacking in number. This study tries to add an image dataset for supervised learning purposes. However, the dataset that will be studied is a unique dataset, not a dataset from the camera. But the image dataset by doing the augmented process by generating from the existing image. By adding a few changes to the augmentation process. So that the image datasets become diverse, not only datasets from camera photos but datasets that are carried out with an augmented process. Camera photos added with painting images will become still images with a newer style. There are many studies on Style transfer to produce images in drawing art, but it is possible to generate images for the needs of image datasets. The resulting force transfer image data set was used as the test data set for the Convolutional Neural Network classification. Classification can also be used to detect specific objects or images. The image dataset resulting from the style transfer is used for the classification of goods transporting vehicles or trucks. Detection trucks are very useful in the transportation system, where currently many trucks are modified to avoid road fees

Publisher

Politeknik Ganesha

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3