Super Resolution Generative Adversarial Networks for Image Supervise Learning

Author:

Lupitha Mariska,Santoso Handri

Abstract

The E-Tilang application system has been widely used to support modern traffic, whereas protocol roads in big cities in Indonesia are already widely used. In principle, the plate number detection tool uses image recognition for detection. Image number plates on vehicles cannot always be read clearly, this is what causes the detection method to be a problem if the image plate number is further processed. The method for processing the plate number image uses deep learning and computer vision methods. For the condition of the image plate number that is not clear, the process of improving the image resolution from low resolution to high resolution is carried out, by applying Generative Adversarial Networks. This method consists of two main parts, namely Generate and Discriminator. Generate serves to generate an image and the Discriminator here is to check the image, can the image plate number be read or not? So that if the image plate number cannot be read, then the process is carried out again to the Generator until it is received by the Discriminator to be read. The process does not end here, the results will be carried out in the next process using Convolutional Neural Networks. Where the process is to detect the plate number image according to the classification of the plate number according to the region. The point is that an unclear image becomes clear by increasing the resolution from low resolution to high resolution so that it is easily read by the Convolutional Neural Network (CNN) algorithm so that the image is easily recognized by the CNN Algorithm. This becomes important in the CNN algorithm process because it gets the processed dataset. To produce a good model, preprocessing of the dataset is carried out. So that the model can detect the image well in terms of model performance.

Publisher

Politeknik Ganesha

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3