Earthquake source inversion by integrated fiber-optic sensing
Author:
Müller Nils,Noe Sebastian,Husmann Dominik,Morel Jacques,Fichtner Andreas
Abstract
We present an earthquake source inversion using a single time series produced by integrated fiber-optic sensing in a phase noise cancellation (PNC) system used for frequency metrology. Operating on a 123 km long fiber between Bern and Basel (Switzerland), the PNC system recorded the Mw3.9 Mulhouse earthquake that occurred on 10 September 2022 around 10 km north-west of the northern fiber end. A generalised least-squares inversion in the 4 - 13 s period band constrains the components of a double-couple moment tensor with an uncertainty that corresponds to around 0.2 moment magnitude units, nearly independent of prior information. Uncertainties for hypocenter location and original time are more variable, ranging between 4 - 20 km and 0.1 - 1 s, respectively, depending on whether injected prior information is realistic or almost absent. This work is a proof of concept that quantifies the resolvability of earthquake source properties under specific conditions using a single-channel stand-alone integrated (non-distributed) fiber-optic measurement. It thereby constitutes a step towards the integration of long-range phase-transmission fiber-optic sensors into existing seismic networks in order to fill significant seismic data gaps, especially in the oceans.
Funder
Horizon 2020 Framework Programme
Publisher
McGill University Library and Archives
Reference41 articles.
1. Afanasiev, M. V., Boehm, C., van Driel, M., Krischer, L., Rietmann, M., May, D. A., Knepley, M. G., & Fichtner, A. (2019). Modular and flexible spectral-element waveform modelling in two and three dimensions. Geophys. J. Int., 216. https://doi.org/10.1093/gji/ggy469 2. BACON Collaboration, Beloy, K., Bodine, M. I., Bothwell, T., Brewer, S. M., Bromley, S. L., Chen, J.-S., Deschênes, J.-D., Diddams, S. A., Fasano, R. J., Fortier, T. M., Hassan, Y. S., Hume, D. B., Kedar, D., Kennedy, C. J., Khader, I., Koepke, A., Leibrandt, D. R., Leopardi, H., … Zhang, X. (2021). Frequency ratio measurements at 18-digit accuracy using an optical clock network. Nature, 591(7851), 564–569. https://doi.org/10.1038/s41586-021-03253-4 3. Bogris, A., Nikas, T., Simos, C., Simos, I., Lentas, K., Melis, N. S., Fichtner, A., Bowden, D., Smolinski, K., Mesaritakis, C., & Chochliouros, I. (2022). Sensitive seismic sensors based on microwave frequency fiber interferometry in commercially deployed cables. Sci. Rep., 12. https://doi.org/10.1038/s41598-022-18130-x 4. Bowden, D. C., Bozdag, E., Shaiksulaiman, A., Fichtner, A., & Konca, O. (2024). Telecom fibers are sensing earthquake hazards in Istanbul. EOS, 105. https://doi.org/10.1029/2024EO240219 5. Bowden, D. C., Fichtner, A., Nikas, T., Bogris, A., Simos, C., Smolinski, K., Lentas, K., Simos, I., & Melis, N. S. (2022). Linking distributed and integrated fiber-optic sensing. Geophys. Res. Lett., 49. https://doi.org/10.1029/2022GL098727
|
|