PyOcto: A high-throughput seismic phase associator

Author:

Münchmeyer JannesORCID

Abstract

Seismic phase association is an essential task for characterising seismicity: given a collection of phase picks, identify all seismic events in the data. In recent years, machine learning pickers have lead to a rapid growth in the number of seismic phase picks. Even though new associators have been suggested, these suffer from long runtimes and sensitivity issues when faced with dense seismic sequences. Here we introduce PyOcto, a novel phase associator tackling these issues. PyOcto uses 4D space-time partitioning and can employ homogeneous and 1D velocity models. We benchmark PyOcto against popular state of the art associators on two synthetic scenarios and a real, dense aftershock sequence. PyOcto consistently achieves detection sensitivities on par or above current algorithms. Furthermore, its runtime is consistently at least 10 times lower, with many scenarios reaching speedup factors above 50.On the challenging 2014 Iquique earthquake sequence, PyOcto achieves excellent detection capability while maintaining a speedup factor of at least 70 against the other models. PyOcto is available as an open source tool for Python on Github and through PyPI.

Publisher

McGill University Library and Archives

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3