WORD2VEC NOT DEAD: PREDICTING HYPERNYMS OF CO-HYPONYMS IS BETTER THAN READING DEFINITIONS

Author:

Arefyev N. V., ,Fedoseev M. V.,Kabanov A. V.,Zizov V. S., , , , ,

Abstract

Expert-built lexical resources are known to provide information of good quality for the cost of low coverage. This property limits their applicability in modern NLP applications. Building descriptions of lexical-semantic relations manually in sufficient volume requires a huge amount of qualified human labour. However, given some initial version of a taxonomy is already built, automatic or semi-automatic taxonomy enrichment systems can greatly reduce the required efforts. We propose and experiment with two approaches to taxonomy enrichment, one utilizing information from word definitions and another from word usages, and also a combination of them. The first method retrieves co-hyponyms for the target word from distributional semantic models (word2vec) or language models (XLM-R), then looks for hypernyms of co-hyponyms in the taxonomy. The second method tries to extract hypernyms directly from Wiktionary definitions. The proposed methods were evaluated on the Dialogue-2020 shared task on taxonomy enrichment. We found that predicting hypernyms of cohyponyms achieves better results in this task. The combination of both methods improves results further and is among 3 best-performing systems for verbs. An important part of the work is detailed qualitative and error analysis of the proposed methods, which provide interesting observations of their behaviour and ideas for the future work.

Publisher

Russian State University for the Humanities

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3