Affiliation:
1. Department of Chemistry, College of Science, University of Basrah, Basrah, Iraq.
Abstract
A novel set of Cobalt(II), Copper(II) and Nickel(II) complexes of ligands, (E)-2-(((2,5-difluorophenyl)imino) methyl)phenol (A), (E)-2,4-dibromo-1-((2-hydroxybenzylidene) amino)anthracene-9,10-dione (D) & (Z)-1-((1-([1,1'-biphenyl]-4-yl)-2-bromoethylidene) amino)-2,4-dibromo anthracene-9,10-dione (E) were synthesized and characterized. Their structures were investigated on the basis of CHN, conductance measurements and spectral studies (H1-NMR & C13-NMR,FT-infrared and Electronic spectroscopies), cyclic voltammetry. It has observed from spectral and analytical studies that metal complexes have the composition of (ML2.X2) and one mole of ligand behaves as bidentate chelating agents around the corresponding metal ion. From solubility test, we obtained that metal complexes of ligands A, D and E had no ionic properties and dissolve partially in polar and slightly in nonpolar solvents. These results confirmed the behavior of metal complexes as weak electrolyte from their low value of molar conductivity. Conductance data and solubility test of the complexes enhanced them to be (1:2 M:L ratio). All data confirmed an octahedral geometry of these complexes and their structures as {[M (A, D or E)2(CH3COO)2], when M= Co or Ni} and {[Cu (A, D or E)2 Cl2]}. Cyclic voltammetry measurements were accomplished of Cobalt(II), Copper(II) and Nickel(II) complexes using Pt wire as counter electrode and Ag/AgNO3 as reference electrode and (Bu4N+PF6+) as supporting electrolyte. The result exhibit the irreversible process showing single one electron transfer process of Cobalt(II) and Nickel(II) complexes and unique quasi-reversible redox couple is attributed to Cu(II) complexes.
Publisher
Oriental Scientific Publishing Company
Subject
Drug Discovery,Environmental Chemistry,Biochemistry,General Chemistry
Reference87 articles.
1. Uyar, Z.; Erdener, D.; Koyuncu, I.; Arslan, Ü.; JOTCSA, 2017, 4(3), 963-980.
2. Ahmed, B. M.; Rudell, N. A.; Soto, I..; Mezei, G.; J. Org. Chem., 2017, 82(19), 10549–10562.
3. CrossRef
4. Girganokar, M. V.; Sgirodkar, S. G.; Res. J. Chem. Sci., 2012, 1, 110-116.
5. Xavier, A.; Srividhya, N.; Journal of Applied Chemistry, 2014, 7(11), 06-15.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献