Bridging Biochemistry and Aging: A Journey Towards Prolonged Health span

Author:

Panchal Neil B.1ORCID

Affiliation:

1. Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara, Gujarat, India.

Abstract

ABSTRACT: Aging involves intricate molecular, cellular and systemic changes over time. Biochemical research has illuminated mechanisms underlying age-related functional decline and revealed promising targets to extend healthspan. Mitochondrial dysfunction, telomere attrition, and impaired proteostasis contribute to aging. However, cellular senescence, marked by arrested proliferation and secretion of proinflammatory factors, has emerged as a central driver. Senolytics, drugs that selectively eliminate senescent cells, alleviate multiple age-related phenotypes in animal models. Stem cell exhaustion also impairs tissue homeostasis. Rejuvenating endogenous stem cell populations could help restore youthful regeneration. Epigenetic alterations lead to aberrant gene regulation, while inflammation and immunosenescence disrupt tissue function. Caloric restriction robustly extends lifespan in animals, but optimally translating this to humans remains challenging. Elucidating interactions between genetics, epigenetics, and lifestyle provides insights into precision interventions tailored to an individual’s aging profile. New technologies like epigenome editing may eventually reprogram aged cells into more youthful states. Metabolic engineering through pathways related to mitochondria, inflammation, and nutrition also shows promise. Realizing the potential of emerging strategies to prolong human healthspan demands collaborative, interdisciplinary efforts spanning from molecular discoveries to clinical implementations, guided by ethical frameworks for responsible translation. Innovative biogerontology research portends a future where healthspan is not constrained by the biological march of time but extended through science thoughtfully applied for the benefit of humankind.

Publisher

Oriental Scientific Publishing Company

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3