Enhancing Cannabis Extraction Efficiency and Sustainability through Quantum Computing: A Review

Author:

R. M Mokhlesur1ORCID,C. A Tahmid1ORCID,S Hassan1ORCID,M Zubaer1ORCID,M Awang2ORCID,M Hasan3ORCID

Affiliation:

1. 1Nuclear Science and Engineering Department, Military Institute of Science and Technology (MIST), Dhaka, Bangladesh.

2. 2Faculty of Pharmacy, University College of MAIWP International (UCMI), KL, MALAYSIA.

3. 3Department of Biomedical Engineering (BME), Military Institute of Science and Technology (MIST), Dhaka, Bangladesh.

Abstract

The plant is also known as hemp, although this term is often used only to refer to varieties of cannabis cultivated for non-drug use. Cannabis has long been used as hemp fiber, hemp seeds and their oil, hemp leaves as vegetable and juice, for medicinal purposes and as a recreational drug. It has been widely used specifically in incense, peaceful sleep for cancer affected patients and traditional medicine. Its common uses include treating knee joint pain, inflammatory-related complaints, diarrhea, and a tonic, sedative, and cardio caring agent. Cannabis sativa is the hemp plant from which marijuana and cannabinoids (leaves, stems, seeds) are derived. The most potent form of this plant's extracts is hash oil, a liquid. Quantum computing, on the other hand, offers unprecedented computational power and can revolutionize various scientific fields. The study's goal is to explore the potential of quantum computing to enhance the extraction process. By employing quantum algorithms, the project aims to optimize critical parameters such as pressure, temperature, and extraction time, leading to improved efficiency and higher yields. Quantum simulations will model the behavior of CO2 as a supercritical fluid within the cannabis matrix, supplying insights into the complex dynamics of the extraction process. Finally, the use of quantum algorithms promises to ease the development of more efficient and sustainable extraction methods, resulting in the production of high-quality cannabis-derived products with enhanced medicinal and industrial applications.

Publisher

Oriental Scientific Publishing Company

Subject

Drug Discovery,Environmental Chemistry,Biochemistry,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3