Abstract
BACKGROUND: Ultraviolet B (UVB) radiation is the main factor causing hyperpigmentation. MSC secretome contains bioactive soluble molecules such as cytokines and growth factors that can accelerate skin regeneration. However, the molecular role of the secretome in hyperpigmentation is still unclear.
AIM: This study aimed to determine the effect of secretome hypoxia mesenchymal stem cells (S-HMSC) gel on the expression of superoxide dismutase (SOD) and matrix metalloproteinases (MMP-1) genes in skin tissue of hyperpigmented rats induced by UVB light exposure.
MATERIALS AND METHODS: Experimental research with post-test only control group. The control, base gel, T1 and T2 groups were UVB irradiated 6 times in 14 days at 302 nm with an minimal erythema dose of 390 mJ/cm2, respectively, while sham group did not receive UVB exposure. T1 was given 100 uL of S-HMSC gel and T2 was given 200 uL of S-HMSC gel every day for 14 days, while base gel received base gel. On day 15, skin tissue was isolated and analyzed for SOD and MMP-1 expression using qRT-PCR.
RESULTS: The relative expression of the SOD gene in the treatment group (P1 = 0.47 ± 0.20, P2 = 1.22 ± 0.47) increased with increasing dose compared to the control group (UVB = 0.05 ± 0.01, Base gel = 0.05 ± 0.02). The relative expression of the MMP-1 gene in the treatment group (T1 = 5.82 ± 1.16, T2 = 2.86 ± 1.57) decreased with increasing dose compared to the control group (Control = 10.10 ± 2.31, and Base gel = 9.55 ± 1.29).
CONCLUSION: Administration of S-HMSC gel can increase SOD gene expression and decrease MMP-1 gene expression in skin tissue of hyperpigmented rats model induced by UVB light.
Publisher
Scientific Foundation SPIROSKI
Reference43 articles.
1. Kim HY, Sah SK, Choi SS, Kim TY. Inhibitory effects of extracellular superoxide dismutase on ultraviolet B-induced melanogenesis in murine skin and melanocytes. Life Sci. 2018;210:201-8. https://doi.org/10.1016/j.lfs.2018.08.056 PMid:30145155
2. Moon HR, Jung JM, Kim SY, Song Y, Chang SE. TGF-β3 suppresses melanogenesis in human melanocytes cocultured with UV-irradiated neighboring cells and human skin. J Dermatol Sci. 2020;99(2):100-8. https://doi.org/10.1016/j.jdermsci.2020.06.007 PMid:32620316
3. Kwon KR, Alam MB, Park JH, Kim TH, Lee SH. Attenuation of UVB-induced photo-aging by polyphenolic-rich spatholobus suberectus stem extract via modulation of MAPK/AP-1/MMPs signaling in human keratinocytes. Nutrients. 2019;11(6):1341. https://doi.org/10.3390/nu11061341 PMid:31207929
4. Siebenga PS, van Amerongen G, Klaassen ES, de Kam ML, Rissmann R, Groeneveld GJ. The ultraviolet B inflammation model: Postinflammatory hyperpigmentation and validation of a reduced UVB exposure paradigm for inducing hyperalgesia in healthy subjects. Eur J Pain. 2019;23(5):874-83. https://doi.org/10.1002/ejp.1353 PMid:30597682
5. Bahaloo M, Rezvani ME, Yazd EF, Mehrjerdi FZ, Davari MH, Roohbakhsh A, et al. Spectroscopic investigation on the interaction of DNA with superparamagnetic iron oxide nanoparticles doped with chromene via dopamine as cross linker. Iran J Basic Med Sci. 2020;23:594-9.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献