Role of Exosomes Derived from Secretome Human Umbilical Vein Endothelial Cells (Exo-HUVEC) as Anti-Apoptotic, Anti-Oxidant, and Increasing Fibroblast Migration in Photoaging Skin Models

Author:

Ellistasari Endra Yustin,Kariosentono Harijono,Purwanto Bambang,Wasita Brian,Riswiyant Risya Cilmiaty Arief,Pamungkasari Eti Poncorini,Soetrisno Soetrisno

Abstract

Background: Prolonged skin exposure to ultraviolet light rays leads to photoaging, which is characterized molecularly by an increase in reactive oxygen species (ROS), cell apoptosis, and a decrease in collagen. Photoaging therapy has been a challenge until recently. Fibroblasts exposed to ultraviolet B (UVB) light proved to be a good model for photoaging skin. They are also the primary dermal cells that stimulate collagen production and extracellular matrix (ECM), which contribute to skin aging. Exo-HUVEC is rich in growth factors, cytokines, and miRNAs, and they all play a vital role in cell-to-cell communication. The migration of fibroblasts is crucial for the development, repair, and regeneration of skin tissue during the repair of skin aging. Objective: An in vitro experimental study was conducted to analyze the effect of Exo-HUVEC on oxidative stress levels, cell apoptosis, and fibroblast migration rate after UVB ray exposure on fibroblasts. Methods: The fibroblast cultures were divided into five groups, including one without UVB exposure, one with UVB exposure, and one with UVB+Exo-HUVEC exposure at 0.1%, 0.5%, and 1%, respectively. Oxidative stress levels were measured using the ELISA test for malondialdehyde (MDA). Furthermore, flow cytometry was used to measure apoptosis using PI/Annexin markers, while a scratch assay examination was used to measure fibroblast migration rate using imaging readings. Results: There were significant differences in the levels of MDA, PI/Annexin, and the rate of fibroblast migration between the UVB-irradiated control group and the Exo-HUVEC treatment group (p<0.001). Conclusion: Exo-HUVEC is a marker of photoaging improvement, which has anti-apoptotic effects and reduces oxidative stress, as well as increases fibroblast migration rate.

Publisher

Scientific Foundation SPIROSKI

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3