The mammary gland is intolerant to bacterial intrusion

Author:

Rainard Pascal1ORCID

Affiliation:

1. Infectiology and Public Health (ISP), National Research Institute for Agriculture, Food and Environment (INRAE), Université de Tours, 37380 Nouzilly, France Email: pascal.rainard@inrae.fr

Abstract

Mammals depend on the secretion of milk to rear their offspring, which exposes the organ in charge of the function, the mammary gland (MG), to bacterial threat. The essential driving force that conditions the interactions of bacteria with the MG is the abundant secretion of milk, a nutritious fluid which endows the common mastitis-causing pathogens with a doubling time of less than 30 min. From this angle, mammals rely on a potential bacterial bioreactor for the survival of their offspring. The MG is lined with a two-layered epithelium devoid of protective mucus. This means that the mammary epithelium is exposed directly to bacteria once they have passed through the opening lactiferous canal. To cope with the threat, the MG resorts to neutrophilic inflammation to check bacterial proliferation in its lumen and at its epithelial lining. Promptness of neutrophil recruitment is a necessity, which requires a low threshold of activation on the part of the mammary epithelium. Constrained by natural selection, the MG has evolved an innate and adaptive immunity intolerant to bacteria regardless of their level of virulence. The evolutionary issue has been to find a compromise between the deleterious tissue-damaging side effects of inflammation and the maintenance of the secretory function indispensable for the offspring’s survival. It appears that the MG relies mainly on neutrophilic inflammation for its protection and is regulated by type 3 immunity. Advances in knowledge of type 3 immunity in the MG will be necessary to induce immune protection adapted to the physiology of this peculiar organ.

Publisher

Open Exploration Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3