Comprehensive Review on Solar, Wind and Hybrid Wind-PV Water Pumping Systems-An Electrical Engineering Perspective

Author:

Angadi Sachin,

Abstract

In India, the demand for water is continuously increasing due to the growing population. Approximately 16.5% of all country’s electricity used to pump this water is from fossil fuels leading to increased pump Life Cycle Cost (LCC) and Green House Gas (GHG) emissions. With the recent advancement in power electronics and drives, renewables like solar photovoltaic and wind energy are becoming readily available for water pumping applications resulting in the reduction of GHG emissions. Recently, research towards AC motor based Water Pumping Systems (WPS) has received a great emphasis owing to its numerous merits. Further, considering the tremendous acceptance of renewable sources, especially solar and wind, this paper provides a detailed review of single-stage and multi-stage WPS consisting of renewable source powered AC motors. The critical review is performed based on the following figure of merits, including the type of motor, power electronics interface and associated control strategies. Also, to add to the reliability of solar PV WPS, hybrid Wind-PV WPS will be discussed in detail. Readers will be presented with the state-of-the-art technology and research directions in Renewable Energy-based WPS (REWPS) to improve the overall system efficiency and hence reduce the payback period.

Publisher

China Power Supply Society

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reduced stage three phase multisource hybrid converter for integration of PV and grid power;Sustainable Energy Technologies and Assessments;2024-02

2. Renewable energy integration in sustainable water systems: A review;Cleaner Engineering and Technology;2024-02

3. A Sustainable Solar Powered Wastewater Recycling System in Ifba Campus Paulo Afonso;2023 IEEE 8th Southern Power Electronics Conference (SPEC);2023-11-26

4. Analysis and Optimization of System Stability Considering DFIG and PV Connection Methods;2023 Power Electronics and Power System Conference (PEPSC);2023-11-24

5. Single-Stage Standalone Photovoltaic Water Pumping System Using Predictive Torque Control (PTC) of Induction Machine;Electric Power Components and Systems;2023-11-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3