Evaluating Social Determinants of Health Variables in Advanced Analytic and Artificial Intelligence Models for Cardiovascular Disease Risk and Outcomes: A Targeted Review

Author:

Snowdon Jane L.1,Scheufele Elisabeth L.1,Pritts Jill1,Le Phuong-Tu2,Mensah George A.3,Zhang Xinzhi3,Dankwa-Mullan Irene1

Affiliation:

1. 1 Center for Artificial Intelligence, Research, and Evaluation, IBM Watson Health, Cambridge, MA 02142

2. 2 Division of Integrative Biological and Behavioral Sciences, National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD 20892

3. 3 Center for Translation Research and Implementation Science, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892

Abstract

Introduction/PurposePredictive models incorporating relevant clinical and social features can provide meaningful insights into complex interrelated mechanisms of cardiovascular disease (CVD) risk and progression and the influence of environmental exposures on adverse outcomes. The purpose of this targeted review (2018–2019) was to examine the extent to which present-day advanced analytics, artificial intelligence, and machine learning models include relevant variables to address potential biases that inform care, treatment, resource allocation, and management of patients with CVD.MethodsPubMed literature was searched using the prespecified inclusion and exclusion criteria to identify and critically evaluate primary studies published in English that reported on predictive models for CVD, associated risks, progression, and outcomes in the general adult population in North America. Studies were then assessed for inclusion of relevant social variables in the model construction. Two independent reviewers screened articles for eligibility. Primary and secondary independent reviewers extracted information from each full-text article for analysis. Disagreements were resolved with a third reviewer and iterative screening rounds to establish consensus. Cohen's kappa was used to determine interrater reliability.ResultsThe review yielded 533 unique records where 35 met the inclusion criteria. Studies used advanced statistical and machine learning methods to predict CVD risk (10, 29%), mortality (19, 54%), survival (7, 20%), complication (10, 29%), disease progression (6, 17%), functional outcomes (4, 11%), and disposition (2, 6%). Most studies incorporated age (34, 97%), sex (34, 97%), comorbid conditions (32, 91%), and behavioral risk factor (28, 80%) variables. Race or ethnicity (23, 66%) and social variables, such as education (3, 9%) were less frequently observed.ConclusionsPredictive models should adjust for race and social predictor variables, where relevant, to improve model accuracy and to inform more equitable interventions and decision making.

Publisher

Ethnicity and Disease Inc

Subject

General Medicine,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3