Physiological variation of insects in agricultural landscapes: potential impacts of climate change.

Author:

Terblanche J. S.,Karsten M.,Mitchell K. A.,Barton M. G.,Gibert P.

Abstract

Abstract

Understanding the physiological and behavioural responses of insects to climate variation is critical, for several reasons, of which three are perhaps most important. First, developing a deeper understanding of pest population dynamics and postharvest control requires information on thermal (and other environmental) traits. Second, invasion of new and emerging pests into novel environments requires some knowledge of the basics of environmental physiology. Finally, to predict and manage aspects of efficacy in control programmes through the release of laboratory- or mass-reared insects typically hinges on some information from phenotype-environment interactions. Here, we provide an overview of how climate and landscape environmental opportunities vary spatially and temporally in order to quantify better ecologically meaningful microclimates for insects and to understand better behavioural opportunities in agricultural landscapes. Then, we describe several key biogeographic patterns that may be significant from an insect pest/climate change perspective, and then discuss briefly possible mechanisms associated with variation in the physiological tolerance and performance of insects. We review and discuss issues surrounding the prediction of climate change and insect physiological and behavioural responses, and consider how insect pests might be impacted by changes in climate in the future via physiological tolerances. Next, we consider movement and dispersal in agricultural landscapes, and what this may mean for recolonization potential or introduction to novel environments under climate change scenarios, especially given how many of these processes are influenced by climatic factors. Finally, this chapter examines interactions between hosts and biocontrol agents, and how climate may influence the outcome of these interactions. The chapter concludes with a summary and discussion of possible areas for future research and key themes emerging from this review of physiological variation in agricultural landscapes and the potential impacts of climate change.

Publisher

CABI

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3