Changes with malnutrition in the concentration of plasma vitamin D binding protein in growing rats

Author:

Laing Christopher J.,Fraser David R.

Abstract

The work presented here examines the possible effects of nutritional deficiencies on the characteristics of the plasma transport protein for vitamin D and its metabolites (vitamin D binding protein, DBP) in the growing rat. Deficiencies in both dietary protein intake and dietary energy intake may decrease the concentration of DBP in the circulation, although plasma DBP was not affected by dietary Ca deficiency. None of the dietary factors examined appears to influence the affinity of DBP for its major ligand, 25-hydroxycholecalciferol (25(OH)D3). Protein-deficient rats seemed to have difficulty in maintaining adequate concentrations of 1,25-dihydroxycholecalciferol (1,25(OH)2D3) in the circulation. The sensitivity of DBP to dietary protein and energy intake may constitute a novel mechanism that may help to explain the observed associations between malnutrition and the development of metabolic bone disease, through alterations to the cellular availability of vitamin D ligands to DBP.

Publisher

Cambridge University Press (CUP)

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

Reference44 articles.

1. The plasma transport proteins of 25-hydroxycholecalciferol in fish, amphibians, reptiles, and birds;Hay;Comparative Biochemistry and Physiology,1976

2. Interpretations of binding curves obtained with high receptor concentrations: practical aid for computer analysis;Swillens;Molecular Pharmacology,1995

3. [19] 1,25-dihydroxyvitamin D microassay employing radioreceptor techniques

4. The Functions of Corticosteroid-Binding Globulin and Sex Hormone-Binding Globulin: Recent Advances*

5. The synthesis and degradation of liver-produced proteins.

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3