Heat Resistance of Clostridium botulinum Type G in Phosphate Buffer

Author:

LYNT RICHARD K.1,SOLOMON HAIM M.1,KAUTTER DONALD A.1

Affiliation:

1. Division of Microbiology, Food and Drug Administration, Washington, DC 20204

Abstract

The heat resistance of two strains of Clostridium botulinum type G in phosphate buffer was studied by the thermal death time (TDT) tube method and the thermal destruction rate (TDR) method. The strains were estimated to have one highly heat-resistant spore among approximately 100 spores or 10,000 relatively heat-labile spores. The heat-labile spores were studied by the TDR method and the heat-resistant spores by the TDT tube method. Decimal reduction times (D) for the heat-labile spores were determined by the slopes of the survivor curves. D values for strain 89 ranged from 0.6 min at 190°F to 6.9 min at 170°F and for strain 2739 from 0.9 min at 200°F to 5.9 min at 180°F. Thermal destruction curves for the heat-labile spores gave z values of 24.0 and 17.5 for two spore stocks of strain 89 and 26.0 for strain 2739. D values for the heat-resistant spores, calculated from the combined data of replicate experiments by the Schmidt probability method, ranged from 0.29 min at 240°F to 1.51 min at 210°F for strain 89 and from 0.25 min at 240°F to 1.48 min at 210°F for strain 2739. Extrapolated to 250°F, the thermal destruction curves of the heat-resistant spores gave D250 values of 0.14 to 0.19 min. The thermal destruction curves of the heat-resistant spores were very flat, however, with z values of 37.9 and 49.1 for the two spore stocks of strain 89 and 37.7 for strain 2739. Low-acid canned food processes will provide the same margin of safety for type G as for other proteolytic strains of C. botulinum but ultra high processing temperatures probably will not.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3