Efficiency of Whole and Skimmed Powdered Milk for Trapping Volatile Compounds Released from Plastic Containers in High-Temperature Applications

Author:

LÓPEZ P.1,BATLLE R.1,SALAFRANCA J.1,NERÍN C.1

Affiliation:

1. Department of Analytical Chemistry, Aragón Institute of Engineering Research, i3A, CPS-University of Zaragoza, María de Luna St. 3, E-50018 Zaragoza, Spain

Abstract

Plastic food containers used for high-temperature applications are not completely inert, and potentially harmful chemicals may be transferred to foodstuffs when such containers are heated. The aim of this work was to investigate the role of food fat content on the efficiency of trapping volatile organic compounds from heated plastic packaging. Relatively simple food matrices such as powdered skimmed and whole milk were evaluated with respect to their retention of several selected migrants: toluene, 1-octene, ethylbenzene, o-, m-, and p-xylene, styrene, and 1,4-dichlorobenzene released from containers made of polypropylene (random and copolymer), polycarbonate, and styrene-acrylonitrile copolymer, which are all commonly used in high-temperature applications. The analytical method (purge and trap gas chromatography and mass spectrometry) was optimized for each matrix. The developed procedure had detection limits of 0.01 to 1.2 ng, depending on the analyte and sample matrix, and both reproducibility and repeatability (expressed as relative standard deviation) were below 15%. This method was applied to the different plastic materials. The concentrations of the volatile compounds in both matrices were well below the established specific migration limits. Temperature and fat content of powdered milk were the most influential variables in mass transfer processes. These values were compared with those obtained with either Tenax TA (alternative test medium for fatty food simulants) or Porapak Q (another widely used sorbent). Similar results were found in skimmed powdered milk and Tenax TA, but significant differences were observed for whole powdered milk.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3