Enhanced Inhibition of Escherichia coli O157:H7 by Lysozyme and Chelators

Author:

BOLAND J. S.1,DAVIDSON P. M.1,WEISS J.1

Affiliation:

1. Department of Food Science and Technology, University of Tennessee, 2605 River Drive, Knoxville, Tennessee 37996-4500, USA

Abstract

This study examined the effects of three chelating agents (EDTA, disodium pyrophosphate [DSPP], and pentasodium tripolyphosphate [PSTPP]) on the inhibition of the growth of Escherichia coli O157:H7 by lysozyme. The objective of this study was to identify replacement chelators that exhibit synergistic properties similar to those of EDTA. The inhibitory effects of EDTA at 300 to 1,500 μg/ml and of DSPP and PSTPP at 3,000 to 15,000 μg/ml in combination with lysozyme at 200 to 600 μg/ml for up to 48 h at pHs of 6.0, 7.0, and 8.0 on four strains of E. coli O157:H7 was studied with the use of a microbroth dilution assay. The addition of EDTA enhanced lysozyme's inhibitory effect on strains of E. coli O157:H7. EDTA at ≥300 μg/ml combined with lysozyme at 200 to 600 μg/ml was sufficient to inhibit the growth of the strains at pHs of 6.0 and 8.0. At pH 7.0, lysozyme at 200 to 600 μg/ml and EDTA concentrations of ≥1,000 μg/ml were effective in inhibiting three of the four strains. DSPP at pH 6.0 was inhibitory at ≥10,000 μg/ml when combined with lysozyme at 200 to 300 μg/ml. In contrast, PSTPP increased the inhibitory activity of lysozyme more effectively at pH 8.0. Lysozyme at 200 to 600 μg/ml was effective against two strains of E. coli O157:H7 when used in conjunction with PSTPP at ≥5,000 μg/ml. The remaining strains were inhibited by PSTPP at ≥10,000 μg/ml. Our results indicate that inhibition occurred with each lysozyme-chelator combination, but the concentrations of phosphates required to increase the antimicrobial spectrum of lysozyme against E. coli O157:H7 were higher than the EDTA concentrations required to achieve the same effect.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3