Affiliation:
1. 1Technische Universität München, Centre of Life and Food Science, Department of Animal Sciences, Institute of Animal Hygiene, Weihenstephaner Berg 3, D-85354 Freising-Weihenstephan, Germany
2. 2Federal Institute for Risk Assessment, Diedersdorfer Weg 1, D-12277 Berlin, Germany
Abstract
The aim of this study was the comparison of an immunomagnetic separation (IMS)–real-time PCR assay for the detection of Salmonella with the cultural reference method according to §35 of the German Law on Food and Commodities (LMBG, L 00.00.20:1998). The IMS–real-time PCR assay includes a nonselective preenrichment step, an IMS, DNA extraction, as well as DNA purification followed by hybridization probe–based real-time PCR analysis. An accurate comparability was achieved, because both methods analyzed the same preenrichment. The evaluation was carried out using both artificially and naturally contaminated meat samples. The IMS–real-time PCR assay provides a result after 12 to 13 h. Compared with the reference method and regarding artificially contaminated meat samples, the IMS–real-time PCR assay achieved a specificity of 80% (false-positive rate of 20%) and a sensitivity of 100% (false-negative rate of 0%). The relative accuracy was 94%. The detection limit of both methods was 10 CFU/25 g. The concordance indexκ defines the statistical accordance, was 0.85 and indicated the agreement of both methods on statistical criteria. Compared to the reference method and analyzing naturally contaminated meat samples (n = 491), the IMS–real-time PCR assay showed a specificity of 99.3% (false-positive rate of 0.7%) and a sensitivity of 83.7% (false-negative rate of 16.3%). The relative accuracy was 98%. The concordance index κ had a value of 0.87 and highlighted the statistical agreement of both methods. In conclusion, the IMS–real-time PCR assay is suitable as specific, sensitive, and rapid screening method for the detection of Salmonella from meat.
Publisher
International Association for Food Protection
Subject
Microbiology,Food Science
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献