Plant Trials of Bacon Made with Lactic Acid Bacteria, Sucrose and Lowered Sodium Nitrite

Author:

TANAKA NOBUMASA1,MESKE LOUISE1,DOYLE MICHAEL P.1,TRAISMAN EDWIN1,THAYER DONALD W.1,JOHNSTON RALPH W.1

Affiliation:

1. Food Research Institute, University of Wisconsin-Madison, Madison, Wisconsin 53706; Eastern Regional Research Center, U.S. Department of Agriculture, Philadelphia, Pennsylvania 19118; and Food Safety and Inspection Service, Science, U.S. Department of Agriculture, Washington, D.C. 20250

Abstract

Bacon prepared with 40 and 80 mg/kg (ppm) sodium nitrite, 0.7% sucrose and a culture of Pediococcus acidilactici (Wisconsin Process), and control bacon prepared with 120 ppm sodium nitrite and no added sucrose or bacterial culture were produced at three commercial bacon production plants. Sodium chloride, phosphate and sodium ascorbate (or sodium erythorbate) levels, as well as other processing conditions such as pumping rate, smokehouse temperature and time, forming and slicing conditions, were those normally used by each plant. Randomly selected samples of each lot were used for a challenge experiment with Clostridium botulinum (types A and B), with ca. 1,000 heat-shocked spores/g of bacon inoculated on each slice, vacuum packaged and incubated at 27°C. Samples were taken periodically up to 56 d of incubation and examined for the presence of botulinal toxin. The challenge experiment revealed that test bacon was substantially greater in antibotulinal properties than the control bacon. Residual nitrite levels of test bacon were lower than those of the control bacon, as were nitrosamines formed upon frying. Average N-nitrospyrrolidine level was 8.6 μg/kg (ppb) in the control, <2.7 ppb in the 80-ppm nitrite product, and <1.6 ppb in the 40-ppm nitrite product. This study indicates that bacon commercially prepared by the Wisconsin Process with 40 or 80 ppm sodium nitrite has a lesser risk of nitrosamine and botulinal toxin formation than bacon prepared with 120 ppm sodium nitrite and no added sucrose and lactic acid bacteria.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Meat safety and quality: a biological approach;International Journal of Food Science & Technology;2020-05-22

2. Role of Starter Cultures on the Safety of Fermented Meat Products;Frontiers in Microbiology;2019-04-26

3. The Ecology of Bacterial Agents of Foodborne Illness;Advances in Environmental Microbiology;2018

4. Other Methods;Food Engineering Series;2012

5. Protezione degli alimenti mediante sostanze chimiche e sistemi di biocontrollo;Food;2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3