Efficacy of Chlorine and a Peroxyacetic Acid Sanitizer in Killing Listeria monocytogenes on Iceberg and Romaine Lettuce Using Simulated Commercial Processing Conditions

Author:

BEUCHAT LARRY R.1,ADLER BARBARA B.1,LANG MEGAN M.1

Affiliation:

1. Center for Food Safety and Department of Food Science and Technology, University of Georgia, 1109 Experiment Street, Griffin, Georgia 30223-1797, USA

Abstract

The efficacy of chlorine (100 μg/ml) and a peroxyacetic acid sanitizer (80 μg/ml; Tsunami 100) in killing Listeria monocytogenes inoculated at populations of 1 to 2, 2 to 3, and 4 to 5 log CFU/g of iceberg lettuce pieces, shredded iceberg lettuce, and Romaine lettuce pieces was determined by treatment conditions simulating those used by a commercial fresh-cut lettuce processor. The lettuce/treatment solution ratio was 1:100 (wt/vol), treatment temperature was 4°C, and total treatment time was 30 s. Compared with washing in water, treatment of iceberg lettuce pieces containing all levels of inoculum and shredded iceberg lettuce containing 2 to 3 or 4 to 5 log CFU/g with chlorine or Tsunami resulted in significant reductions (P ≤ 0.05) of pathogen populations. Populations recovered from Romaine lettuce pieces treated with chlorine or Tsunami were not significantly different from populations recovered from pieces washed with water, regardless of the inoculum level. Within lettuce type and inoculum level, in no instance was the number of L. monocytogenes recovered from lettuce treated with chlorine or Tsunami significantly different. The rate of decrease in free chlorine concentration in treatment solution as affected by the weight/volume ratio (1:100, 1:10, 2:10, and 4:10) of lettuce and solution was determined. The rate of reduction increased as the ratio decreased. The overall order of magnitude of reduction was shredded iceberg lettuce > iceberg pieces > Romaine pieces. The highest reductions in free chlorine concentration in solutions used to treat shredded lettuce are attributed to the release of tissue juices, which increases the concentration of soluble organic materials available for reaction with chlorine.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3