Growth Potential of Listeria monocytogenes in Chef-Crafted Ready-to-Eat Fresh Cheese-Filled Pasta Meal Stored in Modified Atmosphere Packaging

Author:

TREVISANI MARCELLO1,CESARE ALESSANDRA DE2,VITALI SILVA2,MANCUSI ROCCO1,BOVO FEDERICA2,MANFREDA GERARDO2

Affiliation:

1. Department of Veterinary Medical Science, School of Agriculture and Veterinary Medicine, Alma Mater Studiorum, University of Bologna, via Tolara di Sopra 50, 40064 Ozzano dell'Emilia (BO), Italy (ORCID: https://orcid.org/0000-0002-5604-5537 [M.T.])

2. Department of Agricultural and Food Sciences, School of Agriculture and Veterinary Medicine, Alma Mater Studiorum, University of Bologna, Via del Florio 2, 40064 Ozzano dell'Emilia (BO), Italy

Abstract

ABSTRACT This study evaluated the growth of lactic acid bacteria (LAB) in a fresh, filled-pasta meal, stored in modified atmosphere packaging and the influence of lactic acid (LA) and pH on the growth of Listeria monocytogenes (Lm). Samples were taken from three lots manufactured by a local catering company and stored at both 6 and 14°C. LAB numbers, LA concentration, pH, and the presence of Lm were evaluated at 1, 4, 6, 8, 10, 12, and 14 days of shelf life and the undissociated LA concentration ([LA]) was calculated. The LAB maximum cell density was greater in the products stored at 14°C than those stored at 6°C (10.1 ± 1.1 versus 5.6 ± 1.5 log CFU/g) and [LA] at 14 days was 9 to 21 ppm at 6°C and 509 to 1,887 ppm at 14°C. Challenge tests were made to evaluate the interference of LAB and [LA] on Lm growth. Aliquots of the samples (25 g) were inoculated at 1 to 10 days of shelf life and incubated at 9°C for 7 days, and the difference between Lm numbers at the end and at the beginning of the test (δ) was calculated. Logistic regression was used to model the probability of growth of Lm as a function of LAB and [LA]. The products inoculated at 1 day of shelf life had δ values between 4.2 and 5.6 log CFU/g, but the growth potential was progressively reduced during the shelf life. Lm growth was never observed in the products stored at 14°C. In those stored at 6°C, it grew only in the samples with LAB <5.7 log CFU/g. LAB interaction might thus inhibit the growth of Lm in temperature-abused products and limit its growth in refrigerated products. Logistic regression estimated that the probability of Lm growth was <10% if LAB was >6.6 log CFU/g or log[LA] was >2.2 ppm. The growth or inactivation kinetic of Lm was investigated with a homogenate of three samples with LAB numbers close to the maximum population density. After an initial growth, a subsequent reduction in the number of Lm was observed. This means that the maximum numbers of Lm might not be detected at the end of the product shelf life.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

Reference39 articles.

1. Competitive inhibition of Listeria monocytogenes in ready-to-eat meat products by lactic acid bacteria;Amézquita;J. Food Prot,2002

2. A dynamic approach to predicting bacterial growth in food;Baranyi;Int. J. Food Microbiol,1994

3. Beaufort, A., M.Cornu, H.Bergis, A.-L.Lardeux, and B.Lombard. 2014. EURL Lm Technical Guidance Document for conducting shelf-life studies on Listeria monocytogenes in ready-to-eat foods. Version 3. Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail, Paris.

4. Factors affecting the postharvest soluble solids and sugar content of tomato (Solanum lycopersicum L.) fruit;Beckles;Postharvest Biol. Technol,2012

5. Review—persistence of Listeria monocytogenes in food industry equipment and premises;Carpentier;Int. J. Food Microbiol,2011

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3