Thermal Resistance of Clostridium difficile Spores in Peptone Water and Pork Meat

Author:

REDONDO-SOLANO MAURICIO1,BURSON DENNIS E.2,THIPPAREDDI HARSHAVARDHAN1

Affiliation:

1. 1Department of Food Science and Technology, University of Nebraska, Lincoln, Nebraska 68583, USA

2. 2Department of Animal Science, University of Nebraska, Lincoln, Nebraska 68583, USA

Abstract

ABSTRACT The thermal resistance of four strains of Clostridium difficile spores (three hypervirulent and one nonhypervirulent) in peptone water (PW) and pork meat was evaluated individually at 70, 75, 80, 85, and 90°C using two recovery methods (taurocholate and lysozyme). PW or meat was inoculated with C. difficile spores and mixed to obtain ca. 5.0 log CFU/ml or 4.0 log CFU/g, respectively. The D-values of C. difficile spores in PW ranged from 7.07 to 22.14 h, 1.42 to 3.82 h, 0.35 to 0.59 h, 4.93 to 5.95 min, and 1.16 to 1.76 min at 70, 75, 80, 85, and 90°C, respectively, for the four strains using the taurocholate method. The D-values of the respective C. difficile spores were greater (P ≤ 0.05) using the lysozyme method, especially at higher temperatures (85 and 90°C). Greater thermal resistance of C. difficile spores was observed in meat than in PW using the lysozyme method. Hypervirulence of the C. difficile strains was not associated with greater thermal resistance in meat. The z-values for C. difficile spores in meat were between 6.21 and 7.21°C, and they were 11.24 and 12.12°C using the taurocholate and the lysozyme recovery methods, respectively. The D- and z-values of C. difficile spores were greater in both PW and pork than the values reported in the literature. C. difficile spores can survive traditional cooking or thermal processing practices and potentially grow in cooked, ready-to-eat products. The use of effective methods to recover heat-injured spores is necessary to obtain accurate thermal destruction parameters for C. difficile spores.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3