Differences in the Binding of Human Norovirus to and from Romaine Lettuce and Raspberries by Water and Electrolyzed Waters

Author:

TIAN PENG1,YANG DAVID1,MANDRELL ROBERT1

Affiliation:

1. Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California 94710, USA

Abstract

Food contamination by human norovirus (hNoV) is a major cause of gastrointestinal disease. We evaluated the effectiveness of removing inoculated hNoV from the surfaces of raspberries and romaine lettuce by a simple wash in tap water and in different forms of electrolyzed water (EW), including acidic EW (AEW), neutral EW (NEW), and basic EW (BEW). A simple rinsing or soaking in water was able to remove >95% of hNoV from surface-inoculated raspberries. In contrast, only 75% of hNoV was removed from surface-inoculated romaine lettuce by rinsing in tap water. An AEW wash enhanced the binding of hNoV to raspberries and lettuce. Only 7.5% (±10%) and 4% (±3.1%) of hNoV were removed by AEW wash from surface-inoculated raspberries and lettuce, respectively. When raspberries and lettuce were prewashed with NEW or BEW prior to surface inoculation, an AEW wash likewise resulted in significantly less removal of hNoV compared with untreated samples. A prewash with AEW significantly decreased the removal of hNoV from raspberries and lettuce when they were washed with NEW, from 90.6 to 51% and from 76 to 51.3%, respectively. There are minimal or no improvements gained by use of any of the EWs instead of a regular tap water wash in removal of hNoV from produce. However, use of AEW shows a significant decrease in the removal of hNoV from contaminated produce compared with other water rinses. The ability to remove hNoV from different types of produce varies, possibly due to differences among types of ligand-like molecules that bind hNoV. The distribution of hNoV on raspberries and lettuce was studied using recombinant Norwalk-like particles (rNVLP). By immunofluorescence microscopy, we were able to observe binding of rNVLP only to vein areas of romaine lettuce, suggesting that the virus was binding to specific molecules in these areas. Random binding of rNVLP occurred only with raspberries prewashed with AEW or washed with AEW.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3