Bacteriophage-Based Enrichment Coupled to Immunochromatographic Strip–Based Detection for the Determination of Salmonella in Meat and Poultry

Author:

MULDOON MARK T.1,TEANEY GEORGE1,LI JINGKUN1,ONISK DALE V.1,STAVE JAMES W.1

Affiliation:

1. Strategic Diagnostics, Inc., 128 Sandy Drive, Newark, Delaware 19713, USA

Abstract

Immunochemical-based methods for the detection of Salmonella in food can be complicated by the presence of closely related, immunocrossreactive non-Salmonella species in the sample that may cause false-positive results. To circumvent this problem, specific bacteriophages against immunocrossreactive, non-Salmonella bacteria were used in the sample enrichment step to suppress their growth and improve the performance of an immunochromatographic strip–based detection method for Salmonella. Cross-reactive bacteria were isolated from various food sources and were characterized with a panel of Salmonella somatic O antigen–specific monoclonal antibodies. These cross-reactive bacteria were primarily Citrobacter spp. and Escherichia coli with serology shared with Salmonella serogroups B, D, and F. These bacteria were used as hosts for the isolation of specific lytic bacteriophages. When formulated with the primary enrichment, the bacteriophage cocktail significantly reduced false positives with a broadly reactive immunochromatographic test strip. This was demonstrated in both artificially and naturally contaminated meat. False positives in naturally contaminated beef samples were reduced from 32 of 115 samples tested to zero. In raw meat and poultry with a relatively high bioburden (>105 CFU/g), the use of the bacteriophage-based enrichment procedure gave improved recovery of Salmonella compared with the conventional culture-based reference method. This was observed when coupled to either test strip–based or selective agar–based detection. The use of specific bacteriophages for the control of immunocrossreactive and competitive microflora during the food sample enrichment step provides a new approach for enhancing the performance of both immunological- and cultural-based detection methods.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3