Affiliation:
1. 1Department of Animal Science, 2471 TAMU, Texas A&M University, College Station, Texas 77843-2471
2. 2Department of Animal Science, Iowa State University, Ames, Iowa 50011-3150, USA
Abstract
The efficacy of antimicrobial interventions implemented in slaughter establishments to reduce enteric pathogens on beef carcasses should optimally be validated under commercial operation conditions. This study was conducted to identify surrogate organisms for enteric pathogens that could be used to validate beef carcass interventions. The growth, resistance, and attachment properties of nonpathogenic fluorescent protein–marked Escherichia coli strains were compared with those of E. coli O157: H7 and Salmonella strains. Growth curves were obtained based on growth in tryptic soy broth at 37°C. In general, growth parameters were not different among potential surrogates and target pathogens (P > 0.05). Thermal resistance was compared in phosphate-buffered saline (pH 7.4) at 55, 60, and 65°C, and D-values of potential surrogates were not different (P > 0.05) or were higher (P < 0.05) than those of the target pathogens. Acid resistance was tested in phosphate-buffered saline acidified with l-lactic acid at pH 2.5, 3.0, and 3.5, and log reductions (CFU per milliliter) were not different (P > 0.05) among potential surrogates and E. coli O157:H7 strains; however, some Salmonella serotypes were less acid resistant than were surrogates (P < 0.05). The cell surface hydrophobicity was different (P < 0.05) among surrogates and some E. coli O157:H7 strains, but the strength of attachment to beef carcasses was not different (P > 0.05) among all microorganisms. Log reductions (CFU per square centimeter) after application of hot water washes and 2% l-lactic acid sprays on beef carcasses were not different (P > 0.05) among surrogates and pathogens. The nonpathogenic E. coli strains evaluated in this study could be used as surrogates for E. coli O157:H7 and Salmonella to validate hot water and lactic acid interventions on beef carcasses.
Publisher
International Association for Food Protection
Subject
Microbiology,Food Science
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献