Predicting the growth of Listeria monocytogenes in cooked sliced deli turkey breast as function of clean label antimicrobial, pH, moisture and salt

Author:

SHRESTHA SUBASH1ORCID,Erdmann Jerry Joseph2,Smith Sean A3

Affiliation:

1. Cargill Inc 13802 E Camden Chase Ct UNITED STATES Wichita Kansas 67228 8002274455

2. Dupont

3. Cargill Inc

Abstract

The use of antimicrobials in formulations of ready-to-eat meat and poultry products has been identified as a major strategy to control Listeria monocytogenes . The USDA-FSIS recommends no more than 2-logs of Listeria outgrowth over the stated shelf life if antimicrobials are used as a control measure for a product with post-lethality environmental exposure. This study was designed to understand the efficacy of a clean label antimicrobial against the growth of L. monocytogenes as affected by the product attributes. A response surface method-central composite design was used to investigate the effects of product pH, moisture, salt content, and a commercial “clean-label” antimicrobial on the growth of L. monocytogenes in a model turkey deli meat formulation. Thirty treatment combinations of pH (6.3, 6.5, and 6.7), moisture (72, 75, and 78%), salt (1.0, 1.5, and 2.0%), and antimicrobial (0.75, 1.375, and 2.0%) with six replicated center points and eight design star points were evaluated. Treatments were surface inoculated with a 3 log 10 CFU/g target of a five-strain L. monocytogenes cocktail, vacuum packaged, and stored at 5°C for up to 16 weeks. Populations of L. monocytogenes were enumerated from triplicate samples every week until the stationary growth phase was reached. The enumeration data was fitted to a Baranyi and Roberts growth curve to calculate the lag time and maximum growth rate for each treatment.  Linear least-squares regression of the lag-time and growth-rate against the full quadratic, including the second order interaction terms, design matrix was performed. Both lag time and maximum growth rate were significantly affected ( p <0.01) by the antimicrobial concentration and product pH. Product moisture and salt content affected ( p <0.05) lag phase and maximum growth rate, respectively. The availability of a validated growth model assists meat scientists and processors with faster product development and commercialization.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3