Rapid and Visualized Detection of Virulence-Related Genes of Vibrio cholerae in Water and Aquatic Products by Loop-Mediated Isothermal Amplification

Author:

CHEN DAILING1,LIANG ZHILI1,REN SHUNLIN2,ALALI WALID3,CHEN LANMING1

Affiliation:

1. Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People's Republic of China, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, People's Republic of China

2. Department of Internal Medicine, Virginia Commonwealth University/McGuire VA Medical Centre, Richmond, Virginia 23249, USA

3. Department of Epidemiology and Biostatistics, Faculty of Public Health, Kuwait University, Kuwait City, Kuwait

Abstract

ABSTRACT Vibrio cholerae can cause pandemic cholera in humans. The bacterium resides in aquatic environments worldwide. Continuous testing of V. cholerae contamination in water and aquatic products is imperative for food safety control and human health. In this study, a rapid and visualized method was developed for the first time based on loop-mediated isothermal amplification (LAMP) for detection of the important virulence-related genes ace, zot, cri, and nanH for toxins and the infectious process of V. cholerae. Three pairs of molecular probes targeting each of these genes were designed and synthesized. The one-step LAMP reaction was conducted at 65°C for 40 min. Positive results were inspected by the production of a light green color under visible light or green fluorescence under UV light (302 nm). Limit of detection of the LAMP method ranged from 1.85 to 2.06 pg per reaction of genomic DNA or 2.50 × 100 to 4.00 × 102 CFU per reaction for target genes of cell culture of V. cholerae, which was more sensitive than standard PCR. Inclusivity and exclusivity of the LAMP method were 100% for all target genes. The method showed similar high efficiency to a certain extent in rapid testing of spiked or collected specimens of water and aquatic products. Target genes were detected by absence from all water samples from various sources. However, high occurrences of the nanH gene were observed in intestinal samples derived from four species of fish and one species of shellfish, indicating a risk of potentially toxic V. cholerae in commonly consumed aquatic products. The results in this study provide a potential tool for rapid and visualized detection of V. cholerae in water and aquatic products. HIGHLIGHTS

Funder

Science and Technology Commission of Shanghai Municipality

National Natural Science Foundation of China

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3