Inhibitory Effects of Combinations of Chemicals on Escherichia coli, Bacillus cereus, and Staphylococcus aureus Biofilms during the Clean-in-Place Process at an Experimental Dairy Plant

Author:

LEE EUN-SEON1,KIM JONG-HUI1,OH MI-HWA1

Affiliation:

1. Animal Products Research and Development Division, National Institute of Animal Science, Rural Development Administration, Iseo-Myeon, Wanju-gun, Jeollabuk-do, Republic of Korea

Abstract

ABSTRACT In dairy plants, clean-in-place (CIP) equipment cannot be disassembled, making it difficult to clean the inner surface of pipes. In this study, the inhibitory effects of chemical agents on biofilms formed by three foodborne pathogens, Bacillus cereus, Escherichia coli, and Staphylococcus aureus, was evaluated in a dairy CIP system. The experiment was conducted on a laboratory scale. Each of the three bacteria (200 μL) was inoculated onto stainless steel (SS) chips (25 by 25 mm), and the effect of single cleaning agents was evaluated. Individual treatments with NaClO (30, 50, 100, and 200 ppm), NaOH (0.005, 0.01, 0.05, and 0.1%), citric acid (1, 3, 5, and 7%), and nisin (5, 10, 25, 50, 100, and 200 ppm) were used to clean the SS chip for 10 min. The most effective concentration of each solution was selected for further testing in a commercial plant. Simultaneous cleaning with 200 ppm of NaClO (10 min) and 7% citric acid (10 min) reduced the biofilms of B. cereus, E. coli, and S. aureus by 6.9, 7.0, and 8.0 log CFU/cm2, respectively. Both 7% citric acid and 0.1% NaOH were optimal treatments for E. coli. NaClO and citric acid are approved for use as food additives in the Republic of Korea. Our results revealed that a combined treatment with NaClO and citric acid is the most effective approach for reducing biofilms formed by common foodborne pathogens on CIP equipment. These findings can contribute to the production of safe dairy products. HIGHLIGHTS

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3