A Snowball in Hell: The Potential Steam Atmosphere of TOI-1266c

Author:

Harman C. E.ORCID,Kopparapu Ravi KumarORCID,Stefánsson GuðmundurORCID,Lin Andrea S. J.ORCID,Mahadevan SuvrathORCID,Hedges ChristinaORCID,Batalha Natasha E.ORCID

Abstract

Abstract TOI-1266c is a recently discovered super-Venus in the radius valley orbiting an early M dwarf. However, its notional bulk density (∼2.2 g cm−3) is consistent with a large volatile fraction, suggesting that it might have volatile reservoirs that have survived billions of years at more than twice Earth’s insolation. On the other hand, the upper mass limit paints a picture of a cool super-Mercury dominated by >50% iron core (∼9.2 g cm−3) that has tiptoed up to the collisional stripping limit and into the radius gap. Here we examine several hypothetical states for TOI-1266c using a combination of new and updated open-source atmospheric escape, radiative−convective, and photochemical models. We find that water-rich atmospheres with trace amounts of H2 and CO2 are potentially detectable (S/N > ∼ 5) in less than 20 hr of James Webb Space Telescope (JWST) observing time. We also find that water vapor spectral features are not substantially impacted by the presence of high-altitude water or ice clouds owing to the presence of a significant amount of water above the cloud deck, although further work with self-consistent cloud models is needed. Regardless of its mass, however, TOI-1266c represents a unique proving ground for several hypotheses related to the evolution of sub-Neptunes and Venus-like worlds, particularly those near the radius valley.

Funder

National Aeronautics and Space Administration

NASA ∣ NASA Astrobiology Institute

NASA ∣ Astrophysics Division

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3