Morphometric Study of Craters on Saturn’s Moon Rhea

Author:

Aponte-Hernández BetzaidaORCID,Rivera-Valentín Edgard G.ORCID,Kirchoff Michelle R.ORCID,Schenk Paul M.ORCID

Abstract

Abstract Morphometric studies of impact craters on icy moons can be used to understand modification of crater topography. Several processes (e.g., viscous relaxation, ejecta deposition, repeated and overlapping impacts) act to shallow crater depth and relax the crater wall slope to similar or varying extents. Resolving these processes can help constrain the interior structure and surface properties of icy moons. Here, using morphometric measurements of craters on Rhea, we aim to constrain the processes that led to the observed crater population. We measured crater diameter, depth, and wall slope, as well as overall crater morphology (e.g., simple versus complex craters). Our results indicate that there exists a linear correlation between impact crater depth-to-diameter ratio and crater wall slope. This may suggest that the dominant modification process on Rhea is one that affects both properties simultaneously, which supports past heating events as the primary post-impact modification process. Additionally, the simple-to-complex crater transition for Rhea was found to be 12 ± 2 km, which is consistent with reported transition diameters for comparably sized icy bodies, indicating similar surface properties. A transition to shallower crater depths for large complex craters was not documented, indicating the absence of a rheological transition at depth in Rhea’s icy lithosphere, which may support the interpretation that Rhea is not fully differentiated.

Funder

National Aeronautics and Space Administration

Publisher

American Astronomical Society

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3