Modeling the Formation of Selk Impact Crater on Titan: Implications for Dragonfly

Author:

Wakita 脇田 Shigeru 茂ORCID,Johnson Brandon C.ORCID,Soderblom Jason M.ORCID,Shah JahnaviORCID,Neish Catherine D.ORCID,Steckloff Jordan K.ORCID

Abstract

Abstract Selk crater is an ∼80 km diameter impact crater on the Saturnian icy satellite Titan. Melt pools associated with impact craters like Selk provide environments where liquid water and organics can mix and produce biomolecules like amino acids. It is partly for this reason that the Selk region has been selected as the area that NASA’s Dragonfly mission will explore and address one of its primary goals: to search for biological signatures on Titan. Here we simulate Selk-sized impact craters on Titan to better understand the formation of Selk and its melt pool. We consider several structures for the icy target material by changing the thickness of the methane clathrate layer, which has a substantial effect on the target thermal structure and crater formation. Our numerical results show that a 4 km diameter impactor produces a Selk-sized crater when 5–15 km thick methane clathrate layers are considered. We confirm the production of melt pools in these cases and find that the melt volumes are similar regardless of methane clathrate layer thickness. The distribution of the melted material, however, is sensitive to the thickness of the methane clathrate layer. In the case of a 10–15 km thick methane clathrate layer, the melt pool appears as a torus-like shape that is a few kilometers deep, and as a shallower layer in the case of a 5 km thick clathrate layer. Melt pools of this thickness may take tens of thousands of years to freeze, allowing more time for complex organics to form.

Funder

Cassini Data Analysis Program

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3